
PVP
Release 0.2.0

jonny saunders et al

Dec 22, 2021

OVERVIEW

1 Software 3
1.1 PVP Modules . 4

1.1.1 System Overview . 4
1.1.1.1 Hardware . 4
1.1.1.2 Software . 4

1.1.2 Performance . 5
1.1.2.1 ISO Standards Testing . 6
1.1.2.2 Breath Detection . 9
1.1.2.3 High Pressure Detection . 10

1.1.3 Medical Disclaimer . 10
1.1.4 Funding and Support . 11
1.1.5 Hardware Overview . 11
1.1.6 Components . 11

1.1.6.1 Hardware Design . 11
1.1.6.2 Actuator Selection . 13
1.1.6.3 Sensor Selection . 13

1.1.7 Assembly . 14
1.1.7.1 Part 1. 3D Printed Components and Enclosure . 15
1.1.7.2 Part 2. Basic Hardware Assembly . 24
1.1.7.3 Part 3. Electronics Assembly . 59
1.1.7.4 Part 4. Putting it all together . 86

1.1.8 Electronics . 96
1.1.8.1 Power and I/O . 98
1.1.8.2 Sensor PCB . 98
1.1.8.3 Actuator PCB . 100

1.1.9 Bill of Materials . 101
1.1.10 CAD . 103

1.1.10.1 3D Printed Parts . 103
1.1.10.2 Enclosure . 105

1.1.11 Software Overview . 105
1.1.12 Folder Structure . 106

1.1.12.1 PVP Modules . 106
1.1.13 GUI . 106

1.1.13.1 Main GUI Module . 106
1.1.13.2 GUI Widgets . 106
1.1.13.3 GUI Stylesheets . 106
1.1.13.4 Module Overview . 108
1.1.13.5 Screenshot . 108

1.1.14 Controller . 108
1.1.14.1 Purpose of the Controller . 108

i

1.1.14.2 Architecture of the Controller . 109
1.1.15 common module . 118

1.1.15.1 Values . 118
1.1.15.2 Message . 124
1.1.15.3 Loggers . 127
1.1.15.4 Prefs . 130
1.1.15.5 Unit Conversion . 133
1.1.15.6 utils . 134
1.1.15.7 fashion . 135

1.1.16 pvp.io package . 135
1.1.16.1 pvp.io.hal module . 135
1.1.16.2 devices . 137

1.1.17 Alarm . 137
1.1.17.1 Alarm System Overview . 137
1.1.17.2 Alarm Modules . 137
1.1.17.3 Main Alarm Module . 154

1.1.18 coordinator module . 156
1.1.18.1 Submodules . 156
1.1.18.2 coordinator . 156
1.1.18.3 ipc . 159
1.1.18.4 process_manager . 160

1.1.19 Index . 160

2 Medical Disclaimer 161

Python Module Index 163

Index 165

ii

PVP, Release 0.2.0

The global COVID-19 pandemic has highlighted the need for a low-cost, rapidly-deployable ventilator, for the current as
well as future respiratory virus outbreaks. While safe and robust ventilation technology exists in the commercial sector,
the small number of capable suppliers cannot meet the severe demands for ventilators during a pandemic. Moreover,
the specialized, proprietary equipment developed by medical device manufacturers is expensive and inaccessible in
low-resource areas.

The People’s Ventilator Project (PVP) is an open-source, low-cost pressure-control ventilator designed for minimal
reliance on specialized medical parts to better adapt to supply chain shortages. The PVP largely follows established
design conventions, most importantly active and computer-controlled inhalation, together with passive exhalation. It
supports pressure-controlled ventilation, combined with standard-features like autonomous breath detection, and the
suite of FDA required alarms.

See our medRxiv preprint here!

PVP is a pressure-controlled ventilator that uses a minimal set of inexpensive, off-the-self hardware components. An
inexpensive proportional valve controls inspiratory flow, and a relay valve controls expiratory flow. A gauge pressure
sensor monitors airway pressure, and an inexpensive D-lite spirometer used in conjunction with a differential pressure
sensor monitors expiratory flow.

PVP’s components are coordinated by a Raspberry Pi 4 board, which runs the graphical user interface, administers the
alarm system, monitors sensor values, and sends actuation commands to the valves. The core electrical system consists
of two modular board ‘hats’, a sensor board and an actuator board, that stack onto the Raspberry Pi via 40-pin stackable
headers. The modularity of this system enables individual boards to be revised or modified to substitute components
in the case of part scarcity.

OVERVIEW 1

https://www.medrxiv.org/content/10.1101/2020.10.02.20206037v1

PVP, Release 0.2.0

2 OVERVIEW

CHAPTER

ONE

SOFTWARE

PVP’s software was developed to bring the philosophy of free and open-source software to medical devices. PVP
is not only open from top to bottom, but we have developed it as a framework for an adaptable, general-purpose,
communally-developed ventilator.
PVP’s ventilation control system is fast, robust, and written entirely in high-level Python (3.7) – without the develop-
ment and inspection bottlenecks of split computer/microprocessor systems that require users to read and write low-level
hardware firmware.

All of PVP’s components are modularly designed, allowing them to be reconfigured and expanded for new ventilation
modes and hardware configurations.

We provide complete API-level documentation and an automated testing suite to give everyone the freedom to
inspect, understand, and expand PVP’s software framework.

3

PVP, Release 0.2.0

1.1 PVP Modules

1.1.1 System Overview

The People’s Ventilator Project (PVP) is an open-source, low-cost pressure-control ventilator designed for minimal
reliance on specialized medical parts to better adapt to supply chain shortages.

1.1.1.1 Hardware

The device components were selected to enable a minimalistic and relatively low-cost ventilator design, to avoid
supply chain limitations, and to facilitate rapid and easy assembly. Most parts in the PVP are not medical-specific
devices, and those that are specialized components are readily available and standardized across ventilator platforms,
such as standard respiratory circuits and HEPA filters. We provide complete assembly of the PVP, including 3D-
printable components, as well as justifications for selecting all actuators and sensors, as guidance to those who cannot
source an exact match to components used in the Bill of Materials.

PVP Hardware

1.1.1.2 Software

PVP’s software was developed to bring the philosophy of free and open-source software to medical devices. PVP
is not only open from top to bottom, but we have developed it as a framework for an adaptable, general-purpose,
communally-developed ventilator.
PVP’s ventilation control system is fast, robust, and written entirely in high-level Python (3.7) – without the develop-
ment and inspection bottlenecks of split computer/microprocessor systems that require users to read and write low-level
hardware firmware.

4 Chapter 1. Software

PVP, Release 0.2.0

All of PVP’s components are modularly designed, allowing them to be reconfigured and expanded for new ventilation
modes and hardware configurations.

We provide complete API-level documentation and an automated testing suite to give everyone the freedom to
inspect, understand, and expand PVP’s software framework.

PVP Modules

1.1.2 Performance

Fig. 1: Representative pressure control breath cycle waveforms for airway pressure and flow out. Test settings: com-
pliance C=20 mL/cm H2O, airway resistance R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5 cm H2O.

The completed system was tested with a standard test lung (QuickLung, IngMar Medical, Pittsburgh, PA) that allowed
testing combinations of three lung compliance settings (C=5, 20, and 50 mL cm H2O) and three airway resistance
settings (R=5, 20, and 50 cm H2O/L/s). The figure above shows pressure control performance for midpoint settings:
C=20 mL/cm H2O, R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5 cm H2O. PIP is reached within a 300 ms ramp
period, then holds for the PIP plateau with minimal fluctuation of airway pressure for the remainder of the inspiratory
cycle (blue). One the expiratory valve opens, exhalation begins and expiratory flow is measured (orange) as the airway
pressure drops to PEEP and remains there for the rest of the PEEP period.

Some manual adjustment of the pressure waveforms may be warranted depending on the patient, and such adjustment is
permitted through a user flow adjustment setting. This flow adjustment setting allows the user to increase the maximum
flow rate during the ramp cycle to inflate lungs with higher compliance. The flow setting can be readily changed from
the GUI and the control system immediately adapts to the user’s input. An example of this flow adjustment is shown in
the figure above for four breath cycles. While all cycles reach PIP, the latter two have a higher mean airway pressure,
which may be more desirable under certain conditions than the lower mean airway pressure of the former two.

1.1. PVP Modules 5

PVP, Release 0.2.0

Fig. 2: Demonstration of waveform tuning via flow adjustment. If desired, the operator can increase the flow setting
through the system GUI to decrease the pressure ramp time. Test settings: compliance C=20 mL/cm H2O, airway
resistance R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5 cm H2O.

1.1.2.1 ISO Standards Testing

In order to characterize the PVP’s control over a wide range of conditions, we followed FDA Emergency Use Autho-
rization guidelines, which specify ISO 80601-2-80-2018 for a battery of pressure controlled ventilator standard tests.
We tested the conditions that do not stipulate a leak, and present the results here. For each configuration the following
parameters are listed: the test number (from the table below), the compliance (C, mL/cm H2O), linear resistance (R,
cm H2O/L/s), respiratory frequency (f, breaths/min), peak inspiratory pressure (PIP, cm H2O), positive end-expiratory
pressure (PEEP, cm H2O), and flow adjustment setting.

Table 1: Standard test battery from Table 201.105 in ISO 80601-2-80-
2018 for pressure controlled ventilators

Test
num-
ber

Intended
delivered
volume
(mL)

Compli-
ance (mL
(hPa)^-1)

Linear re-
sistance
(hPa(L/s)^-
1) +/-
10%

Leakage
(mL/min)
+/- 10%

Venti-
latory
fre-
quency
(breaths/min)

Inspira-
tory time
(s)

Pressure
(hPa)

PEEP
(hPa)

1 500 50 5 0 20 1 10 5
2 500 50 20 0 12 1 15 10
3 500 20 5 0 20 1 25 5
4 500 20 20 0 20 1 25 10
5 500 50 5 5000 20 1 25 5
6 500 50 20 10000 12 1 25 10
7 300 20 20 0 20 1 15 5
8 300 20 50 0 12 1 25 10
9 300 10 50 0 20 1 30 5
10 300 20 20 3000 20 1 25 5
11 300 20 50 6000 12 1 25 10
12 200 10 20 0 20 1 25 10

These tests cover an array of conditions, and more difficult test cases involve a high airway pressure coupled with a

6 Chapter 1. Software

PVP, Release 0.2.0

Fig. 3: Performance results of the ISO 80601-2-80-2018 pressure controlled ventilator standard tests with an intended
delivered tidal volume of 500 mL. For each configuration the following parameters are listed: the test number (from
table 201.105 in the ISO standard), the compliance (C, mL/cm H2O), linear resistance (R, cm H2O/L/s), respiratory
frequency (f, breaths/min), peak inspiratory pressure (PIP, cm H2O), positive end-expiratory pressure (PEEP, cm H2O),
and flow adjustment setting. PIP is reached in every test condition except for case 2, which is approximately 2.4 cm
H2O below the set point.

1.1. PVP Modules 7

PVP, Release 0.2.0

Fig. 4: Performance results of the ISO 80601-2-80-2018 pressure controlled ventilator standard tests with an intended
delivered tidal volume of 300 mL. For each configuration the following parameters are listed: the test number (from
table 201.105 in the ISO standard), the compliance (C, mL/cm H2O), linear resistance (R, cm H2O/L/s), respiratory
frequency (breaths/min), peak inspiratory pressure (PIP, cm H2O), positive end-expiratory pressure (PEEP, cm H2O),
and flow adjustment setting. PIP is reached in every test condition.

8 Chapter 1. Software

PVP, Release 0.2.0

low lung compliance (case nos. 8 and 9). Under these conditions, if the inspiratory flow rate during the ramp phase is
too high, the high airway resistance will produce a transient spike in airway pressure which can greatly overshoot the
PIP value. For this reason, the system uses a low initial flow setting and allows the clinican to increase the flow rate if
necessary.

Fig. 5: Tidal volume performance for the ISO 80601-2-80-2018 pressure controlled ventilator standard tests, averaged
across 30 breath cycles for each condition.

The PVP integrates expiratory flow to monitor the tidal volume, which is not directly set in pressure controlled venti-
lation, but is an important parameter. Of the test conditions in the ISO standard, four that we tested intended a nominal
delivered tidal volume of 500 mL, three intended 300 mL, and one intended 200 mL. For most cases, the estimated
tidal volume has a tight spread clustered within 20% of the intended value.

1.1.2.2 Breath Detection

Fig. 6: Spontaneous breath detection.

1.1. PVP Modules 9

PVP, Release 0.2.0

A patient-initiated breath after exhalation will result in a momentary drop in PEEP. PVP may optionally detect these
transient decreases to trigger a new pressure-controlled breath cycle. We tested this functionality by triggering numer-
ous breaths out of phase with the intended inspiratory cycle, using a QuickTrigger (IngMar Medical, Pittsburgh, PA)
to momentarily open the test lung during PEEP and simulate this transient drop of pressure.

1.1.2.3 High Pressure Detection

Fig. 7: High pressure alarm demonstration.

Above is a demonstration of the PVP’s high airway pressure alarm (HAPA). An airway blockage results in a high airway
pressure (above 60 cm H2O) that the system corrects within ~500 ms. Test settings: compliance C=20 mL/cm H2O,
airway resistance R=20 cm H2O/L/s, PIP=30 cm H2O, PEEP=5 cm H2O.

1.1.3 Medical Disclaimer

PVP1 is not a regulated or clinically validated medical device. We have not yet performed testing for safety or efficacy
on living organisms. All material described herein should be used at your own risk and do not represent a medical
recommendation. PVP1 is currently recommended only for research purposes.

This website is not connected to, endorsed by, or representative of the view of Princeton University. Neither the authors
nor Princeton University assume any liability or responsibility for any consequences, damages, or loss caused or alleged
to be caused directly or indirectly for any action or inaction taken based on or made in reliance on the information or
material discussed herein or linked to from this website.

PVP1 is under continuous development and the information here may not be up to date, nor is any guarantee made as
such. Neither the authors nor Princeton University are liable for any damage or loss related to the accuracy, complete-
ness or timeliness of any information described or linked to from this website.

By continuing to watch or read this, you are acknowledging and accepting this disclaimer.

10 Chapter 1. Software

PVP, Release 0.2.0

1.1.4 Funding and Support

Funding and lab space for this project was provided by Princeton University in direct response to the COVID-19 pan-
demic. Note: See Disclaimer for further details.

We wish to thank the Trevor Day School of NYC (https://www.trevor.org) for their kind loan of multiple 3D printers,
which greatly contributed to the rapid prototyping efforts of the team. Additional thanks are in order to recognize the
indeterminate length of the loan (. . . no really, thanks for not asking for them back yet).

We also wish to thank Nick and Alex Winnard of the Berkshire Laser Co. in Pittsfield, MA (https://berkshirelaserco.
com/) for generously donating their laser cutting and engraving services. We are grateful for their skills and expertise
in creating the gorgeous acrylic enclosure, as displayed on our prototype device, and guidance improving the enclosure
documentation.

1.1.5 Hardware Overview

Schematic diagram of main mechanical components

The PVP components were selected to enable a minimalistic and relatively low-cost ventilator design, to avoid supply
chain limitations, and to facilitate rapid and easy assembly. Most parts in the PVP are not medical-specific devices,
and those that are specialized components are readily available and standardized across ventilator platforms, such as
standard respiratory circuits and HEPA filters. We provide complete assembly of the PVP, including 3D-printable
components, as well as justifications for selecting all actuators and sensors, as guidance to those who cannot source an
exact match to components used in the Bill of Materials.

Fig. 8: PVP hardware schematic

1.1.6 Components

Fig. 9: PVP hardware schematic

1.1.6.1 Hardware Design

The following is a guided walk through the main hardware components that comprise the respiratory circuit, roughly
following the flow of gas from the system inlet, to the patient, then out through the expiratory valve.

Hospital gas blender. At the inlet to the system, we assume the presence of a commercial-off-the-shelf (COTS) gas
blender. These devices mix air from U.S. standard medical air and O2 as supplied at the hospital wall at a pressure of
around 50 psig. The device outlet fitting may vary, but we assume a male O2 DISS fitting (NIST standard). In field
hospitals, compressed air and O2 cylinders may be utilized in conjunction with a gas blender, or a low-cost Venturi-
based gas blender. We additionally assume that the oxygen concentration of gas supplied by the blender can be manually
adjusted. Users will be able to monitor the oxygen concentration level in real-time on the device GUI.

Fittings and 3D printed adapters. Standardized fittings were selected whenever possible to ease part sourcing in the
event that engineers replicating the system need to swap out a component, possibly as the result of sourcing constraints
within their local geographic area. Many fittings are American national pipe thread (NPT) standard, or conform to
the respiratory circuit tubing standards (15mm I.D./22 mm O.D.). To reduce system complexity and sourcing require-
ments of specialized adapters, a number of connectors, brackets, and manifold are provided as 3D printable parts.
All 3D printed components were print-tested on multiple 3D printers, including consumer-level devices produced by
MakerBot, FlashForge, and Creality3D.

1.1. PVP Modules 11

https://www.trevor.org
https://berkshirelaserco.com/
https://berkshirelaserco.com/

PVP, Release 0.2.0

Pressure regulator. The fixed pressure regulator near the inlet of the system functions to step down the pressure
supplied to the proportional valve to a safe and consistent set level of 50 psi. It is essential to preventing the over-
pressurization of the system in the event of a pressure spike, eases the real-time control task, and ensures that down-
stream valves are operating within the acceptable range of flow conditions.

Proportional valve. The proportional valve is the first of two actuated components in the system. It enables regulation
of the gas flow to the patient via the PID control framework, described in a following section. A proportional valve
upstream of the respiratory circuit enables the controller to modify the inspiratory time, and does not present wear
limitations like pinch-valves and other analogous flow-control devices. The normally closed configuration was selected
to prevent over-pressurization of the lungs in the event of system failure.

Sensors. The system includes an oxygen sensor for monitoring oxygen concentration of the blended gas supplied to
the patient, a pressure sensor located proximally to the patient mouth along the respiratory circuit, and a spirometer,
consisting of a plastic housing (D-Lite, GE Healthcare) with an attached differential pressure sensor, to measure flow.
Individual sensor selection will be described in more detail in a following section. The oxygen sensor read-out is used to
adjust the manual gas blender and to trigger alarm states in the event of deviations from a setpoint. The proximal location
of the primary pressure sensor was selected due to the choice of a pressure-based control strategy, specifically to ensure
the most accurate pressure readings with respect to the patient’s lungs. Flow estimates from the single expiratory flow
sensor are not directly used in the pressure-based control scheme, but enable the device to trigger appropriate alarm
states in order to avoid deviations from the tidal volume of gas leaving the lungs during expiration. The device does not
currently monitor gas temperature and humidity due to the use of an HME rather than a heated humidification system.

Pressure relief. A critical safety component is the pressure relief valve (alternatively called the “pressure release
valve”, or “pressure safety valve”). The proportional valve is controlled to ensure that the pressure of the gas supplied
to the patient never rises above a set maximum level. The relief valve acts as a backup safety mechanism and opens
if the pressure exceeds a safe level, thereby dumping excess gas to atmosphere. Thus, the relief valve in this system is
located between the proportional valve and the patient respiratory circuit. The pressure relief valve we source cracks
at 1 psi (approx 70 cm H2O).

Standard respiratory circuit. The breathing circuit which connects the patient to the device is a standard respiratory
circuit: the flexible, corrugated plastic tubing used in commercial ICU ventilators. Because this system assumes the
use of an HME/F to maintain humidity levels of gas supplied to the patient, specialized heated tubing is not required.

Anti-suffocation check valve. A standard ventilator check valve (alternatively called a “one-way valve”) is used as a
secondary safety component in-line between the proportional valve and the patient respiratory circuit. The check valve
is oriented such that air can be pulled into the system in the event of system failure, but that air cannot flow outward
through the valve. A standard respiratory circuit check valve is used because it is a low-cost, readily sourced device
with low cracking pressure and sufficiently high valve flow coefficient (Cv).

Bacterial filters. A medical-grade electrostatic filter is placed on either end of the respiratory circuit. These function
as protection against contamination of device internals and surroundings by pathogens and reduces the probability of
the patient developing a hospital-acquired infection. The electrostatic filter presents low resistance to flow in the airway.

HME. A Heat and Moisture Exchanger (HME) is placed proximal to the patient. This is used to passively humidify
and warm air inspired by the patient. HMEs are the standard solution in the absence of a heated humidifier. While we
evaluated the use of an HME/F which integrates a bacteriological/viral filter, use of an HME/F increased flow resistance
and compromised pressure control.

Pressure sampling filter. Proximal airway pressure is sampled at a pressure port near the wye adapter, and measured
by a pressure sensor on the sensor PCB. To protect the sensor and internals of the ventilator, an additional 0.2 micron
bacterial/viral filter is placed in-line between the proximal airway sampling port and the pressure sensor. This is also
a standard approach in many commercial ventilators.

Expiratory solenoid. The expiratory solenoid is the second of two actuated components in the system. When this
valve is open, air bypasses the lungs, thereby enabling the lungs to de-pressurize upon expiration. When the valve is
closed, the lungs may inflate or hold a fixed pressure, according to the control applied to the proportional valve. The
expiratory flow control components must be selected to have a sufficiently high valve flow coefficient (Cv) to prevent
obstruction upon expiration. This valve is also selected to be normally open, to enable the patient to expire in the event

12 Chapter 1. Software

PVP, Release 0.2.0

of system failure.

Manual PEEP valve. The PEEP valve is a component which maintains the positive end-expiratory pressure (PEEP) of
the system above atmospheric pressure to promote gas exchange to the lungs. A typical COTS PEEP valve is a spring-
based relief valve which exhausts when pressure within the airway exceeds a fixed limit. This limit is manually adjusted
via compression of the spring. Various low-cost alternatives to a COTS mechanical PEEP valve exist, including the
use of a simple water column, in the event that PEEP valves become challenging to source. We additionally provide a
3D printable PEEP valve alternative which utilizes a thin membrane, rather than a spring, to maintain PEEP.

1.1.6.2 Actuator Selection

When planning actuator selection, it was necessary to consider the placement of the valves within the larger system.
Initially, we anticipated sourcing a proportional valve to operate at very low pressures (0-50 cm H20) and sufficiently
high flow (over 120 LPM) of gas within the airway. However, a low-pressure, high-flow regime proportional valve is far
more expensive than a proportional valve which operates within high-pressure (~50 psi), high-flow regimes. Thus, we
designed the device such that the proportional valve would admit gas within the high-pressure regime and regulate air
flow to the patient from the inspiratory airway limb. Conceivably, it is possible to control the air flow to the patient with
the proportional valve alone. However, we couple this actuator with a solenoid and PEEP valve to ensure robust control
during PIP (peak inspiratory pressure) and PEEP hold, and to minimize the loss of O2-blended gas to the atmosphere,
particularly during PIP hold.

Proportional valve sourcing. Despite designing the system such that the proportional valve could be sourced for
operation within a normal inlet pressure regime (approximately 50 psi), it was necessary to search for a valve with a
high enough valve flow coefficient (Cv) to admit sufficient gas to the patient. We sourced an SMC PVQ31-5G-23-
01N valve with stainless steel body in the normally-closed configuration. This valve has a port size of 1/8” (Rc) and
has previously been used for respiratory applications. Although the manufacturer does not supply Cv estimates, we
empirically determined that this valve is able to flow sufficiently for the application.

Expiratory valve sourcing. When sourcing the expiratory solenoid, it was necessary to choose a device with a suffi-
ciently high valve flow coefficient (Cv) which could still actuate quickly enough to enable robust control of the gas flow.
A reduced Cv in this portion of the circuit would restrict the ability of the patient to exhale. Initially, a number of con-
trol valves were sourced for their rapid switching speeds and empirically tested, as Cv estimates are often not provided
by valve manufacturers. Ultimately, however, we selected a process valve in lieu of a control valve to ensure the device
would flow sufficiently well, and the choice of valve did not present problems when implementing the control strategy.
The SMC VXZ250HGB solenoid valve in the normally-open configuration was selected. The valve in particular was
sourced partially due to its large port size (3/4” NPT). If an analogous solenoid with rapid switching speed and large
Cv cannot be sourced, engineers replicating our device may consider the use of pneumatically actuated valves driven
from air routed from a take-off downstream of the pressure regulator.

Manual PEEP valve sourcing. The PEEP valve is one of the few medical-specific COTS components in the device.
The system configuration assumes the use of any ventilator-specific PEEP valve (Teleflex, CareFusion, etc.) coupled
with an adapter to the standard 22 mm respiratory circuit tubing. In anticipation of potential supply chain limitations,
as noted previously, we additionally provide the CAD models of a 3D printable PEEP valve.

1.1.6.3 Sensor Selection

We selected a minimal set of sensors with analog outputs to keep the system design sufficiently adaptable. If there were
a part shortage for a specific pressure sensor, for example, any readily available pressure sensor with an analog output
could be substituted into the system following a simple adjustment in calibration in the controller. Our system uses
three sensors: an oxygen sensor, an airway pressure sensor, and a flow sensor with availability for a fourth addition, all
interfaced with the Raspberry Pi via a 4-channel ADC (Adafruit ADS1115) through an I2C connection.

Oxygen sensor. We selected an electrochemical oxygen sensor (Sensironics SS-12A) designed for the range of FiO2
used for standard ventilation and in other medical devices. The cell is self-powered, generating a small DC voltage
(13-16 mV) that is linearly proportional to oxygen concentration. The output signal is amplified by an instrumentation

1.1. PVP Modules 13

PVP, Release 0.2.0

amplifier interfacing the sensor with the Raspberry Pi controller (see electronics). This sensor is a wear part with a
lifespan of about 6 years under operation at ambient air; therefore under continuous ventilator operation with oxygen-
enriched gas, it will need to be replaced more frequently. This part can be replaced with any other medical O2 sensor
provided calibration is performed given that these parts are typically sold as raw sensors, with a 3-pin molex interface.
Moreover, the sensor we specify is compatible with a range of medical O2 sensors, including the Analytical Industries
PSR-11-917-M or the Puritan Bennett 4-072214-00, so we anticipate abundant sourcing options.

Airway pressure sensor. We selected a pressure sensor with a few key characteristics in mind: 1) the sensor had
to be compatible with the 5V supply of the Raspberry Pi, 2) the sensor’s input pressure range had conform to the
range of pressures possible in our device (up to 70 cm H2O, the pressure relief valve’s cutoff), and 3) the sensor’s
response time had to be sufficiently fast. We selected the amplified middle pressure sensor from Amphenol (1 PSI-
D-4V), which was readily available, with a measurement range up to 70 cm H2O and an analog output voltage span
of 4 V. Moreover, the decision to utilize an analog sensor is convenient for engineers replicating the design, as new
analog sensors can be swapped in without extensive code and electronics modifications, as in the case of I2C devices
which require modifications to hardware addresses. Other pressure sensors from this Amphenol line can be used as
replacements if necessary.

Spirometer. Because flow measurement is essential for measuring tidal volume during pressure-controlled ventilation,
medical flow sensor availability was extremely limited during the early stages of the 2020 COVID-19 pandemic, and
supply is still an issue. For that reason, we looked for inexpensive, more easily sourced spirometers to use in our system.
We used the GE D-Lite spirometer, which is a mass-produced part and has been used in hospitals for nearly 30 years.
The D-Lite sensor is inserted in-line with the flow of gas on the expiratory limb, and two ports are used to measure the
differential pressure drop resulting from flow through a narrow physical restriction. The third pressure-measurement
port on the D-Lite is blocked by a male Luer cap, but this could be used as a backup pressure measurement port if
desired. An Amphenol 5 INCH-D2-P4V-MINI was selected to measure the differential pressure across the two D-Lite
takeoffs. As with the primary (absolute) pressure sensor, this sensor was selected to conform to the voltage range of the
Raspberry Pi, operate within a small pressure range, and have a sufficiently fast response time (partially as a function of
the analog-to-digital converter). Also, this analog sensor can be readily replaced with a similar analog sensor without
substantial code/electronics modifications.

1.1.7 Assembly

PVP1 Assembly Instructions
This guide should help you assemble the ventilator from the parts found in the Bill of Materials:
[https://www.peoplesvent.org/en/latest/bom.html]{.underline}

We’ll first show you how to assemble the hardware, then the electronics, and finally put the two together.

The entire Solidworks Assembly, with associated part files, can be found in this Google Drive:
https://drive.google.com/drive/folders/1YrJEOmOMZtXcHABYO0hEu0etJ7LAC9Lf?usp=sharing

The current assembly is named TLA_VENTILATOR_ASSY_V2.SLDASM.

14 Chapter 1. Software

https://www.peoplesvent.org/en/latest/bom.html

PVP, Release 0.2.0

1.1.7.1 Part 1. 3D Printed Components and Enclosure

1.1. PVP Modules 15

PVP, Release 0.2.0

1.1 3D Printing Adapters and Brackets.

Before we can get started with assembly, you’ll need to print a few parts using a standard 3D printer. (We ran our test
prints on Prusa, MakerBot, FlashForge, and Creality3D printers.)

You can download all the STL files here for printing: [https://www.peoplesvent.org/en/latest/assembly.html#d-
printed-parts]{.underline}

Be sure to print airway components at as close to 100% infill as possible, and be mindful of printing orientation. An
example printing setup is shown below. We do not recommend using supports or rafts unless you find them to be
necessary, as they are challenging to remove. If there is a cylindrical channel, try to orient it vertically (such that the
circle is traced along the build plate), which will improve circularity of the channel.

If you are using a Prusa i3, we also provide this print setup here.

1.2 Tapping the 3D Printed Components

Several of the 3D printed parts will need to be tapped to enable connection with other parts in the device- such as
push-to-connect adapters. You will be able to tap all of these parts by hand (since the plastic cuts easily), and the Bill
of Material contains the list of taps you will need, including specialized taps such as the M16:

https://www.peoplesvent.org/en/latest/bom.html

All required taps are shown below:

16 Chapter 1. Software

https://www.peoplesvent.org/en/latest/assembly.html#d-printed-parts
https://www.peoplesvent.org/en/latest/assembly.html#d-printed-parts
https://www.peoplesvent.org/en/latest/bom.html

PVP, Release 0.2.0

First, we will tap the Sensor Atrium component, which houses the oxygen sensor and “emergency breathing valve”
check valve, and passes air from the inspiratory limb to the respiratory circuit (with a DAR filter in between).

Step 1. Use a ¼” NPT tap to thread the hole as shown below (the smaller airway hole on the flat side of the Sensor
Atrium), where a push-to-connect adapter will attach.

1.1. PVP Modules 17

PVP, Release 0.2.0

Step 2. Use the M16 tap to thread the hole on the opposite side of the Sensor Atrium, where the oxygen sensor will
attach.

18 Chapter 1. Software

PVP, Release 0.2.0

Next, we will tap the adapters at either side of the expiratory solenoid.

Step 3. Use the ¾” NPT tap to thread the holes on the larger end of the two “22mm to 0.75 NPTM adapter” parts.

1.1. PVP Modules 19

PVP, Release 0.2.0

20 Chapter 1. Software

PVP, Release 0.2.0

Last, we will tap the adapter to the pressure sampling lines.

Step 4. Finally, use the ¼”-28 tap to thread the two airway holes on the “Luer lock filter mount” part. These will hold
the metal luer lock adapters to the gas sampling lines for monitoring pressure.

1.1. PVP Modules 21

PVP, Release 0.2.0

22 Chapter 1. Software

PVP, Release 0.2.0

1.3 Cutting Enclosure Pieces.

Step 1. Laser cut, or cut out by hand, the six HPDE side panels.
Cut all panels out of the 1/16” HPDE sheets. If you wish to cut these pieces using a laser cutter, we provide DXF files
here, under “Enclosure”: [https://www.peoplesvent.org/en/latest/assembly.html]{.underline}

Cuts can also be made by hand using a sharp pair of scissors and a razor-cutter. Pieces are 17 ” by 7 ” (45.4025 cm
by 20.0025 cm), or 7 ” by 7 ” (20.0025 cm by 20.0025 cm) along the outer dimensions. Inner hole placement can be
determined from the documentation, also at:

[https://www.peoplesvent.org/en/latest/assembly.html]{.underline}

(We cut our side panels for the demo out of acrylic for ease of visibility.)

Step 2. Insert the rubber grommet(s).
The bottom panel includes a hole for a large rubber grommet. Insert this by hand.

If you wish, you may also insert a small custom grommet in the back panel.

1.1. PVP Modules 23

https://www.peoplesvent.org/en/latest/assembly.html
https://www.peoplesvent.org/en/latest/assembly.html

PVP, Release 0.2.0

1.1.7.2 Part 2. Basic Hardware Assembly

24 Chapter 1. Software

PVP, Release 0.2.0

2.1 Assembling the bottom frame

Step 1. Cut the 80/20 (“T-slotted framing”) to appropriately sized pieces: In total, you will need 4 pieces of length 17
in (45.4025 cm), and 9 pieces of length 5 in (14.9225 cm).

You can cut the aluminum 80/20 pieces by hand with a hack-saw, or using machinery such as a bandsaw. Either way,
be sure to file down any rough edges afterward!

1.1. PVP Modules 25

PVP, Release 0.2.0

Step 2. Attach the ¾” NPT (male-male) connectors to either side of the expiratory solenoid, and then attach the two
“22mm to .75 NPTM adapter” parts to those, as shown. When attaching any airway threaded parts in this assembly
process, be sure to use PTFE thread sealant tape, wrapping twice around the threads, in the direction shown (away from
your body if the threads are oriented towards the right).

(Note: From now on, we will not explicitly write out the need for Teflon tape; be sure to use it whenever a threaded
airway component is involved!)

26 Chapter 1. Software

PVP, Release 0.2.0

1.1. PVP Modules 27

PVP, Release 0.2.0

Step 3. Ensure that the two side ports of the pressure regulator are blocked off, with the plugs included with the part
(and Teflon tape, as always). Attach a ¼” NPT push-to-connect adapter to the pressure regulator on the “outlet” side:
check the bottom of the part to determine which side is “IN” for “inlet”. The inlet manifold will have two ¼” NPT
ports on the same side: plug one of those with the manifold plug, and attach the other end to the ¼” NPT connector.
Attach the other end of this connector to the “inlet” end of the pressure regulator.

Step 4. Mounting the inlet manifold.
First, attach the 3D-printed “Inlet manifold bracket”, by pushing two standard button-head screws down from the top
of the piece (as shown, such that the button heads fall in the grooves), then loosely attaching a hex nut to each. Then,
slide the two hex nuts into a T-slot of a short (5 ”) 80/20 piece, and use an Allen key to secure the screws such that the
printed piece is as far to the “right” as it can go (as shown), without the hex nuts extended past the length of 80/20.

Tip: when attaching hex nuts, make sure the side with the nub is facing down (such that it touches the inner channel of
the 80/20 T-slot).

Then, insert the inlet manifold into the printed piece, as shown: if the printed part is to the right of the 80/20 length,
then the pressure regulator should be oriented away from you. Insert the 2” button head hex drive screws through the
remaining holes in the 3D printed piece, to secure the inlet manifold, as shown (also away from you). Finally, attach a
washer (W_10_NARROW_0.406OD_316_SS) and hex nut (LN_10-32_STAINLESS_18-8) to each.

28 Chapter 1. Software

PVP, Release 0.2.0

1.1. PVP Modules 29

PVP, Release 0.2.0

Step 5. Attach the “Expiratory outlet bracket to PEEP”.
Drop one standard button head hex screw down the deeper channel, and attach as before: loosely screw on a hex nut,
slide it in the channel, and then use an Allen key to tighten the screw. This time, tighten the hex screw such that the
printed part is in-line with the edge of the 80/20 piece, as shown. Then, insert a second button head hex screw, facing
outward as shown, and loosely attach a hex nut (you will tighten this later).

Step 6. Attach corner brackets to finish this frame piece.
Pre-assemble the gusset (corner) brackets by inserting a hex screw into each hole, and then loosely attaching a hex nut
to each, as shown. Tighten the gussets so that they align with the edge of the 80/20 piece, as shown, keeping the second
hex nut on each piece loose. (You will use these to attach another 80/20 piece later.)

30 Chapter 1. Software

PVP, Release 0.2.0

Step 7. Attach cable tie and side panel screw.
If you intend to use the cable P-clip for cable management, and to attach the HPDE side panels, attach the P-clip using
a standard button head hex screw, and mount an additional hex screw for attaching the side panel later.

1.1. PVP Modules 31

PVP, Release 0.2.0

Progress: One piece of the bottom frame is assembled!

32 Chapter 1. Software

PVP, Release 0.2.0

Step 8. Assemble the opposite side of the frame.
Assemble a second short (5 ”) piece of 80/20 as shown: this uses the 3D printed part called the “Expiratory DAR filter
bracket”, which will mirror the “Expiratory outlet bracket to PEEP” part on the opposing frame leg. Also, attach three
gusset (corner) brackets, as shown.

*Note: if you intend to attach the side panels, leave off the corner bracket on the same side as the 3D printed piece. If
you’re not using the side panels, keep the bracket here for additional support!

1.1. PVP Modules 33

PVP, Release 0.2.0

Step 9. Attach side panel screws.
As before, if you plan to attach HDPE side panels later on, attach the screws for them now, as shown.

34 Chapter 1. Software

PVP, Release 0.2.0

Step 10. Attach the expiratory solenoid assembly to the frame.
• First, assemble and attach two gusset (corner) brackets to their hex

screws/nuts, then affix to a long (17 ”) leg of the framing, leaving 1” from the end of the piece on each
side (that is, leaving space for a vertical piece of 80/20).

• Then, attach three hex screws/nuts to the lower rows of each

90-degree angle bracket as shown; then attach the angle brackets by inserting a short (1mm long)
button head screw through the topmost hole of each angle bracket in the opposite direction. These
shorter hex screws will screw directly into the solenoid.

• Finally, slide the hex nuts attached to the angle brackets into the

T-slot of the 80/20 piece, such that the gusset brackets and solenoid are oriented above the 80/20 piece,
as shown. Loosely tighten these in place; you will adjust the position of the solenoid later.

1.1. PVP Modules 35

PVP, Release 0.2.0

36 Chapter 1. Software

PVP, Release 0.2.0

Step 11. Attach gusset (corner) brackets to the opposing 80/20 leg.
Assemble the gusset (corner) brackets with hex screw/nuts as before, and attach them to a long (17 ”) 80/20 piece.
Leave 1” of space from each of the side gussets (sufficient space for a vertical 80/20 piece), and affix the third bracket
just off-center (to support a centered, vertical 80/20 piece).

Step 12. Assemble the bottom frame components.
Slide the hex nuts on the shorter 80/20 pieces you have assembled into the longer 80/20 slots, and use an Allen key to
tighten the screws in place, as shown. The shorter 80/20 legs should be flush with the ends of the longer 80/20 legs
when you are done, and the gusset (corner) brackets will help stabilize the frame.

1.1. PVP Modules 37

PVP, Release 0.2.0

Step 13. Attaching the ventilator “feet” and bottom panel.
If you are attaching the lower, perforated HPDE sheet, insert the rubber grommet. Pre-assemble the shorter (1mm)
button head screws to hex nuts, and the leveling mounts (feet) to hex nuts. Use these to attach the lower HPDE panel
as shown, by sliding the hex nuts along the long channels on the bottom of the frame assembly; then tighten in place.

38 Chapter 1. Software

PVP, Release 0.2.0

Step 14. Attach the respiratory tube segment.
Awesome- almost done with the lower level of the ventilator! As a last step, attach the short segment of respiratory
circuit between the “Expiratory outlet bracket to PEEP” and the nearest “22mm to .75NPTM adapter”. You’ll be able
to twist this on by hand.

1.1. PVP Modules 39

PVP, Release 0.2.0

40 Chapter 1. Software

PVP, Release 0.2.0

2.2 Assembling the frame sides

Step 1. Attach the proportional valve to its mount.
Use the two socket head screws (6mm long) to attach the proportional valve to the 3D printed “proportional valve
bracket”. The inlet should be to the right in the orientation shown below.

1.1. PVP Modules 41

PVP, Release 0.2.0

Step 2. Attach the pressure relief valve to its adapters.
Assemble the T-line push-to-connect adapter, to a female-female ¼” NPT connector, and finally to the Nylon pressure
release valve.

42 Chapter 1. Software

PVP, Release 0.2.0

Step 3. Attach the luer lock connectors to the luer lock filter mount.
These pieces will screw in, with the luer lock portions facing outwards.

1.1. PVP Modules 43

PVP, Release 0.2.0

Step 4. Assemble the sensor atrium.
Attach the ¼” NPT push-to-connect adapter, check valve, and oxygen sensor into the appropriate holes in the “Sensor
Atrium Manifold”, as shown. Do not push the check valve into the device too far, as it may restrict air flow within the
atrium.

44 Chapter 1. Software

PVP, Release 0.2.0

Step 5. Attach sensor atrium to a short 80/20, and then to the device.
Affix button head screws/nuts to the sensor atrium, with hex nuts facing towards one another, as shown. Slide the hex
nuts along T-slots on either side of a short (5 ”) 80/20 piece; then insert this vertically into the device as shown. Tighten
into place via the hex screws on the lower gusset (corner) brackets.
*Note: If you are attaching the side panels, be sure to use a SHORT nut on the sensor atrium (the nut on the side with
two, farther from the oxygen sensor), and keep the short side facing down when inserting. This will allow the sensor
atrium to drop lower and align with the holes in the front panel.

1.1. PVP Modules 45

PVP, Release 0.2.0

Step 6. Attach the second vertical leg, along the “Expiratory DAR filter bracket”.
As before, slide a short (5 ”) 80/20 piece into the position shown, then tighten the hex screws.

46 Chapter 1. Software

PVP, Release 0.2.0

Step 7. Attach the luer lock filter bracket to the newly inserted 80/20 leg.
*Note: If you’re attaching the side panels, use another SHORT 80/20 nut in the uppermost spot on the bracket. We’ll
want this part to be as high as possible to match up with the holes on the front panel.

1.1. PVP Modules 47

PVP, Release 0.2.0

Step 8. Attach the third vertical 80/20 leg, then attach the proportional valve mount.
Insert a third, short (5 ”) 80/20 piece, then tighten the hex screw to hold it in place. Use another standard hex screw/nut
to attach the proportional valve mount to this piece, towards the inside of the device, such that the push-to-connects
roughly align vertically with the push-to-connect on the sensor atrium.

48 Chapter 1. Software

PVP, Release 0.2.0

Step 9. Attach the final two vertical 80/20 pieces in the remaining corners.
*Note: If you’re attaching the side panels, now is the time to insert 80/20 nuts on the vertical 80/20 pieces as well as
the long 80/20 pieces on the lower frame.

1.1. PVP Modules 49

PVP, Release 0.2.0

Step 10. Attach the D-Lite.
Attach a blue silicone connector to the “Expiratory DAR filter bracket), on the side within the device. Then, insert
the D-Lite between the silicone connector and the nearest “22mm to .75 NPTM adapter”, adjusting the position of the
expiratory solenoid assembly until the D-lite is firmly connected at each end. The smaller end of the D-lite should fit
within the “22mm to .75 NPTM adapter”. Then, use an Allen key to tighten the hex screws on the 90 degree angle
brackets to maintain the position of the solenoid.

50 Chapter 1. Software

PVP, Release 0.2.0

1.1. PVP Modules 51

PVP, Release 0.2.0

Step 11. Attach the pressure release valve and pneumatic tubing.
Cut the pneumatic tubing into three segments: two of length 2.5” (6.35cm), and one of length 5.5” (13.97cm). Insert
the long piece between the push-to-connect adapters attached to the pressure regulator and proportional valve. Insert
the two shorter tubes into either push-to-connect on the pressure relief valve assembly; then attach these between the
sensor atrium and proportional valve push-to-connects, as shown. These tubing lengths should keep the proportional
valve fairly centered.

52 Chapter 1. Software

PVP, Release 0.2.0

2.2 Assembling the frame top

Step 1. Attach the lifting handles.
Use the lifting handle screws (SHCS_0.25-20x0.75_Gr8_ASTM_F1136), with standard hex nuts, to mount the lifting
handles to two short (5 ”) pieces of 80/20, such that the handles are centered on the pieces.

1.1. PVP Modules 53

PVP, Release 0.2.0

Step 2. Prepare all the remaining gusset (corner) brackets.
Attach the hex screws/nuts loosely to the 13 remaining gusset (corner) brackets, so that they can be attached readily in
future steps.

54 Chapter 1. Software

PVP, Release 0.2.0

Step 3. Attach gusset (corner) brackets, as shown.

1.1. PVP Modules 55

PVP, Release 0.2.0

Step 4. Cut and punch DIN rail pieces.
Cut the DIN rail to 7 ” (20.0025cm) lengths, punching or drilling holes ½” (1.27cm) from each edge large enough to
support the standard button head hex screws.

56 Chapter 1. Software

PVP, Release 0.2.0

Step 5. Attach the DIN rails and assemble the rest of the top level.
• Slide two long (17 ”) 80/20 pieces onto one of the shorter pieces,

and screw in place. Add an additional gusset (corner) bracket to each long leg, as shown, leaving 1”
of space from the end (to support a vertical piece).

• Use a short (1mm) button head hex screw, a zinc washer

(W_0.25_FLAT_THICK_GR8_YELLOW_ZINC), and a standard hex nut to attach each end of the
DIN rails to the frame, as shown. Slide an additional gusset (corner) bracket between the rails on one
side- this will support the central vertical channel on the device.

• Once the DIN rails are roughly in place (exact positions can be

adjusted later), use the remaining gusset (corner) brackets and assembled short 80/20 piece, and mirror
the other side of the assembly, as shown.

1.1. PVP Modules 57

PVP, Release 0.2.0

Step 6. Finally, slide the top frame directly into the vertical 80/20 channels of the device, and tighten all hex
screws.

58 Chapter 1. Software

PVP, Release 0.2.0

Congrats! The basic hardware assembly is complete!

1.1.7.3 Part 3. Electronics Assembly

3.1 Assembling the Sensor Board

[Image of all components laid out in order/piles, with labels]

1.1. PVP Modules 59

PVP, Release 0.2.0

60 Chapter 1. Software

PVP, Release 0.2.0

You will also need:

• A soldering iron

• Solder

• Helping hands for holding parts while soldering

• Wire cutters (for clipping off long capacitor/resistor legs)

Step 1. Solder the 40-pin stackable RPi header to the Actuator PCB.
Push the pins up from the bottom of the board, as shown, and then solder into place.

1.1. PVP Modules 61

PVP, Release 0.2.0

Step 2. Solder the 4-pin, 3-pin, and 2-pin 0.1” headers onto the board (positions J2, J3, J4).
Break the pins off the larger header array in units of 4, 2, and 3 using pliers. Insert the short end of the pins into the
holes from the top of the board, and solder from below. This will leave the long ends of the pins sticking up vertically
from the board, as shown:

62 Chapter 1. Software

PVP, Release 0.2.0

Step 3. Solder the 330 Ohm resistor onto the board (position R1).
Bend the resistor legs before inserting into the board from above. Ideally, solder the resistor in place such that the
resistor is hovering just above the board. Then, snip the long legs off from the back of the board (cutting above the tiny
“cone” formed by the solder) using wire cutters.

1.1. PVP Modules 63

PVP, Release 0.2.0

Step 4. Solder the two 10 µF, 25V capacitors onto the board (positions C1, C2).
Insert the capacitors from the top of the board until the legs snap into place. Be sure that the longer capacitor leg is
inserted into the hole corresponding to the “+” sign. After soldering, snip the long legs off from the back of the board
using wire cutters.

64 Chapter 1. Software

PVP, Release 0.2.0

Step 5. Solder the TL7660 (the rail splitter for the INA126) onto the board (position U1).
Be sure to orient the small circle on the top of the part to the indicated notch drawn on the board.

1.1. PVP Modules 65

PVP, Release 0.2.0

Step 6. Solder the INA126 (the instrumentation amplifier for the oxygen sensor) onto the board (position U2).
As before, make sure that the notch on the part aligns with the notch drawn on the PCB.

66 Chapter 1. Software

PVP, Release 0.2.0

Step 7. Solder the Amphenol 5 INCH-D2-P4V-MINI (differential pressure sensor) onto the board (position U3).
Bend all four pins evenly and orient the part such that the black ports face towards the outside of the board. The pressure
lines will attach here.

1.1. PVP Modules 67

PVP, Release 0.2.0

Step 8. Solder the Adafruit ADS1115 (12-bit ADC) to the board.
First, solder the pins to the ADC itself, with the long ends facing down. Then insert the pins through the board and
solder from the back side.

68 Chapter 1. Software

PVP, Release 0.2.0

1.1. PVP Modules 69

PVP, Release 0.2.0

Step 9. Finally, solder the Amphenol 1 PSI-D-4V-MINI (airway pressure sensor) to the board.
As before, bend all four pins together, then insert and solder from the back side of the board. Be sure the ports are
facing out: we will attach pressure lines here as well.

70 Chapter 1. Software

PVP, Release 0.2.0

3.2 Assembling the Actuator Board

[Image of all components laid out in order/piles, with labels]

1.1. PVP Modules 71

PVP, Release 0.2.0

You will also need:

• A soldering iron

72 Chapter 1. Software

PVP, Release 0.2.0

• Solder

• Helping hands for holding parts while soldering

• Wire cutters (for clipping off long capacitor legs)

Step 1. Solder the 40-pin stackable RPi header to the Actuator PCB.
Push the pins up from the bottom of the board, as shown, and then solder into place.

1.1. PVP Modules 73

PVP, Release 0.2.0

Step 2. Solder the 2-pin 0.1” header onto the board (position J5).
Insert the short end of the pins into the holes from the top of the board, and solder from below. This will leave the long
ends of the pins sticking up vertically from the board, as shown:

74 Chapter 1. Software

PVP, Release 0.2.0

Step 3. Solder the 100 µF, 16V capacitor onto the board (position C1).
Insert the legs of the capacitor into the slots from the top of the board. The longer leg should be inserted into the side
marked “+”. Once the capacitor is soldered in place, use wire cutters to clip off the long legs from the back.

1.1. PVP Modules 75

PVP, Release 0.2.0

Step 4. Solder the ULN2003A (Darlington array) into place (position U1).
Be sure to match the notched end of the part to the notch indicated on the board.

76 Chapter 1. Software

PVP, Release 0.2.0

Step 5. Solder the two 6.8 µF, 50V capacitors onto the board (positions C2, C3).
As before, ensure that the longer capacitor legs are inserted through the side marked with the “+”. Once the parts are
soldered in, snip the long legs from the back of the board.

Step 6. Solder the 24-to-5 V DC-DC converter (CUI PDQ15-Q24-S5-D) onto the board, as shown.

1.1. PVP Modules 77

PVP, Release 0.2.0

Step 7. Solder the 3 2-pin screw terminals (5.08mm pitch) to the board, as shown.
Be sure to orient all three such that wires can be screwed into the terminals from the outside of the board (as shown).

78 Chapter 1. Software

PVP, Release 0.2.0

1.1. PVP Modules 79

PVP, Release 0.2.0

Step 8. Finally, jumper the 2-pin header.
You can use a pin jumper (“shunt”) if you have one, or crush the pins together with a pair of pliers, and then solder the
two pins together. We display the latter method, below:

Step 9. The actuator board is ready to go!

80 Chapter 1. Software

PVP, Release 0.2.0

1.1. PVP Modules 81

PVP, Release 0.2.0

3.3 Assembling the PCB-RPi stack

Step 1. Attach three gas sampling lines to the port on the two pressure sensors.
The differential pressure sensor has two ports. If you have an airway-safe glue, feel free to glue these in place (not
required).

82 Chapter 1. Software

PVP, Release 0.2.0

Step 2. Begin stacking the board by attaching the DIN rail mounts.
You can pre-“tap” the 3D printed DIN rail mounts using the small screws that come with the Raspberry Pi. Then, screw
four of the 16mm standoffs through the Raspberry Pi from above, and into the DIN rail mounts, as shown.

1.1. PVP Modules 83

PVP, Release 0.2.0

Step 3. Next, add the sensor board.
Connect the sensor board via the stackable headers, then use another four 16mm standoffs to attach the board by
screwing these into the original four standoffs, using pliers as needed.

84 Chapter 1. Software

PVP, Release 0.2.0

Step 4. Add the actuator board.
Connect the actuator board via the stackable headers, then use the four screws that came with your Raspberry Pi to
attach the board, as shown.

1.1. PVP Modules 85

PVP, Release 0.2.0

1.1.7.4 Part 4. Putting it all together

86 Chapter 1. Software

PVP, Release 0.2.0

4.1 Wrapping it up.

(Optional step: Attach the side panels using the shorter 80/20 hex screws, as you go.)

Step 1. Attach the DAR filters.
Insert these by hand to the appropriate ports on the front of the device, as shown: these will attach to the sensor atrium
and the expiratory DAR filter bracket. The DAR filters indicate which end should face the patient.

1.1. PVP Modules 87

PVP, Release 0.2.0

Step 2. Attach the luer lock filter.
This can be twisted on by hand to the luer lock adapter at the front of the device.

88 Chapter 1. Software

PVP, Release 0.2.0

Step 3. Attach the PEEP valve.
If you’re using a commercial PEEP valve, begin by attaching the blue silicone connector. Then, insert the PEEP valve
into the 3D printed “22mm to commercial PEEP adapter”- then plug this assembly into the silicone connector.

1.1. PVP Modules 89

PVP, Release 0.2.0

Step 4. Attach the power supply.
Pull the tab on the Meanwell power supply to attach it to the DIN rail closest to the back of the device. It may be
necessary to adjust the position of this DIN rail to ensure that the power supply is not touching the expiratory solenoid
or inlet manifold/pressure regulator. Feel free to reposition as needed!

*Note: if you wish to attach a rear HPDE panel, we recommend inserting the power cable to the power supply through
the grommet of the rear panel before insertion of the power supply into the device. Do this now! You can also attach
the “Rear Panel Vent”s to the rear panel; they will snap right in.

90 Chapter 1. Software

PVP, Release 0.2.0

Step 5. Attach the luer lock plug to the D-Lite.
The third port on the D-Lite (physically removed from the other two) is not needed; plug that now with a luer lock plug.

1.1. PVP Modules 91

PVP, Release 0.2.0

Step 6. Attach the power and ground wires to the PCB stack. Then wire the proportional valve and solenoid.
Use a small flathead screwdriver to attach the power and ground from the power supply to the PCB stack where indicated.
Then do the same for the proportional valve wires and the expiratory solenoid wires: the board indicates which pair
goes where!

92 Chapter 1. Software

PVP, Release 0.2.0

Step 7. Attach the gas sampling lines to the D-Lite.
Use the luer lock connector on the smaller of the two ports, then connect the two gas sampling lines from the differential
pressure sensor (from the same sensor on the Sensor Board).

1.1. PVP Modules 93

PVP, Release 0.2.0

Step 8. Attach the gas sampling line to the luer lock filter mount adapter.
The third gas sampling line runs from the second pressure sensor; attach this to the inner luer lock adapter on the luer
lock filter mount.

94 Chapter 1. Software

PVP, Release 0.2.0

Step 9. Plug in any required cables to connect the monitor and keyboard.
Run the cables outside of the box through the rubber grommets; wire ties can assist with cable management.

Congratulations! You’re done!

1.1. PVP Modules 95

PVP, Release 0.2.0

1.1.8 Electronics

The PVP is coordinated by a Raspberry Pi 4 board, which runs the graphical user interface, administers the alarm
system, monitors sensor values, and sends actuation commands to the valves. The core electrical system consists of
two modular PCB ‘hats’, a sensor PCB and an actuator PCB, that stack onto the Raspberry Pi via 40-pin stackable
headers. The modularity of this system enables individual boards to be revised or modified to adapt to component
substitutions if required.

We outsourced our PCB fabrication to Advanced Circuits, based out of Aurora, CO (for $33 each): https://www.4pcb.
com/pcb-prototype-2-4-layer-boards-specials.html If you would like to do the same, you can send them the Gerber
.zip files we have provided directly.

96 Chapter 1. Software

https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html
https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html

PVP, Release 0.2.0

Fig. 10: PVP block diagram for main electrical components

1.1. PVP Modules 97

PVP, Release 0.2.0

1.1.8.1 Power and I/O

The main power to the systems is supplied by a DIN rail-mounted 150W 24V supply, which drives the inspiratory
valve (4W) and expiratory valves (13W). This voltage is converted to 5V by a switched mode PCB-mounted regulated
to power the Raspberry Pi and sensors. This power is transmitted across the PCBs through the stacked headers when
required.

Table 2: Power and I/O bill of materials
Part Description
Meanwell 24 V DC Power Supply DIN Rail Power Supplies 150W 24V 5A EN55022 Class B
Raspberry Pi Raspberry Pi- Model B-1 (1GB RAM)
USB-C Charger/cable To power the RPi
Micro SD Card SanDisk Ultra 32GB MicroSDHC UHS-I Card with Adapter
Raspberry Pi Display Matrix Orbital: TFT Displays & Accessories 7 in HDMI TFT G

Series
HDMI for Display Display cable: HDMI Cables HDMI Cbl Assbly 1M Micro to STD
Mini USB for Display Display cable: USB Cables / IEEE 1394 Cables 3 ft Ext A-B Mini

USB Cable
Screen mount thumb screws SCREEN_MOUNT_THUMB_SCREW: Brass Raised Knurled-

Head Thumb Screw, 1/4”-20 Thread Size, 1/2” Long
Cable grommet USER_INTERFACE_CABLE_GROMMET: Buna-N Rubber

Grommets, for 1-3/8” Hole Diameter and 1/16” Material Thickness,
1” ID, pack of 10

Cable P-clip USER_INTERFACE_CABLE_P-CLIP_0.375_ID_SS: Snug-Fit
Vibration-Damping Loop Clamp, 304 Stainless Steel with Silicone
Rubber Cushion, 3/8” ID, pack of 10, 17/64 mounting holes

Keyboard Adesso: Mini keyboard with trackball

1.1.8.2 Sensor PCB

The sensor board interfaces four analog output sensors with the Raspberry Pi via I2C commands to a 12-bit 4-channel
ADC (Adafruit ADS1015).

1. an airway pressure sensor (Amphenol 1 PSI-D-4V-MINI)

2. a differential pressure sensor (Amphenol 5 INCH-D2-P4V-MINI) to report the expiratory flow rate through a
D-Lite spirometer

3. an oxygen sensor (Sensiron SS-12A) whose 13 mV differential output signal is amplified 250-fold by an instru-
mentation amplifier (Texas Instruments INA126)

4. a fourth auxiliary slot for an additional analog output sensor (unused)

A set of additional header pins allows for digital output sensors (such as the Sensiron SFM3300 flow sensor) to be
interfaced with the Pi directly via I2C if desired.

• Sensor PCB - [KiCad project .zip]

98 Chapter 1. Software

PVP, Release 0.2.0

Fig. 11: Sensor PCB schematic

1.1. PVP Modules 99

PVP, Release 0.2.0

Table 3: Sensor PCB bill of materials
Ref Part Purpose
J1 40-pin stackable RPi header Connects board to RPi
J2 4-pin 0.1” header I2C connector if desired
J3 2-pin 0.1” header Connects ALRT pin from ADS1115 to RPi if needed
J4 3-pin 0.1” header or 3 pin fan ex-

tension cable
Connects board to oxygen sensor

R1 330 Ohm resistor Sets gain for INA126
C1 10 uF, 25V Cap for TL7660
C2 10 uF, 25V Cap for TL7660
U1 TL7660, DIP8 Rail splitter for INA126
U2 INA126, DIP8 Instrumentation amplifier for oxygen sensor output
U3 Amphenol 5 INCH-D2-P4V-

MINI
Differential pressure sensor (for flow measurement)

U4 Adafruit ADS1115 4x 12-bit ADC
U5 Amphenol 1 PSI-D-4V-MINI Airway pressure sensor
U6 Auxiliary analog output sensor slot

1.1.8.3 Actuator PCB

The purpose of the actuator board is twofold:

1. regulate the 24V power supply to 5V (CUI Inc PDQE15-Q24-S5-D DC-DC converter)

2. interface the Raspberry Pi with the inspiratory and expiratory valves through an array of solenoid drivers
(ULN2003A Darlington transistor array)

• Actuator PCB - [KiCad project .zip]

Fig. 12: Actuator PCB schematic

100 Chapter 1. Software

PVP, Release 0.2.0

Table 4: Actuator PCB bill of materials
Ref Part Purpose
J2 2-pin screw terminal, 5.08 mm

pitch, PCB mount
Connects to 24V supply

J3 2-pin screw terminal, 5.08 mm
pitch, PCB mount

Connects to on/off expiratory valve

J4 2-pin screw terminal, 5.08 mm
pitch, PCB mount

Connects to inspiratory valve, driven by PWM

J5 40-pin stackable RPi header Connects board to RPi
J6 2-pin 0.1” header Jumper between 5V and Raspberry Pi
C1 100 uF, 16V 5V rail filter cap
C2 6.8 uF, 50V 24V rail filter cap
C3 6.8 uF, 50V 24V rail filter cap
U1 ULN2003A Darlington BJT array to drive solenoids
U2 CUI PDQ15-Q24-S5-D 24-to-5V DC-DC converter

1.1.9 Bill of Materials

• Bill of materials - [.csv]

Table 5: PVP bill of materials
Component Description McMaster Part # (if applicable) Category Unit Qty Pkg. Qty Bulk Qty Bulk Parts Cost Unit Cost Subtotal (Bulk Parts Cost) Subtotal (Unit Parts Cost) Sourcing Link

I/O
Raspberry Pi Raspberry Pi- Model B-1 (1GB RAM) Compute 1 1 1 $53.00 $53.00 $53.00 $53.00 https://www.mouser.com/ProductDetail/Raspberry-Pi/RPI4-MODBP-2GB-BULK?qs=sGAEpiMZZMspCjQQiuQ1fFuhMF5SnQS%252Ba2qMvWLE7K2IHh0t%252BecCsw%3D%3D
USB-C Charger/cable To power the RPi Compute 1 1 1 $9.88 $9.88 $9.88 $9.88 https://www.mouser.com/ProductDetail/Seeed-Studio/106990291?qs=sGAEpiMZZMtyU1cDF2RqUIiI0Dr66jYXGV7bLfwtXvw%3D
Micro SD Card SanDisk Ultra 32GB MicroSDHC UHS-I Card with Adapter Compute 1 1 1 $8.29 $8.29 $8.29 $8.29 https://www.amazon.com/dp/B073JWXGNT/ref=twister_B07B3MFBHY?_encoding=UTF8&th=1
7” Display Lilliput 779GL-70NP/C/T - 7” HDMI Capacitive Touchscreen monitor Compute 1 1 1 $249.18 $249.18 $249.18 $249.18 https://lilliputdirect.com/lilliput-779gl-capacitive-touchscreen-hdmi-monitor?search=779gl
Screen Mount Lilliput Monitor Stand Compute 1 1 1 $6.00 $6.00 $6.00 $6.00 https://lilliputdirect.com/lilliput-monitor-accessories/mounting-brackets-stands-and-arms/lilliput-monitor-stand
HDMI for Display Display cable: HDMI Cables HDMI Cbl Assbly 1M Micro to STD Compute 1 1 1 $19.59 $19.59 $19.59 $19.59 https://www.mouser.com/ProductDetail/molex/68786-0001/?qs=ASaot9jrY6HVNv%2F8Wfc2rQ%3D%3D&countrycode=US¤cycode=USD
Mini USB for Display Display cable: USB Cables / IEEE 1394 Cables 3 ft Ext A-B Mini USB Cable Compute 1 1 1 $5.49 $5.49 $5.49 $5.49 https://www.mouser.com/ProductDetail/matrix-orbital/extmusb3ft/?qs=4ybA1OVEHcjRr1VgZWmnlw%3D%3D&countrycode=US¤cycode=USD
Cable grommet USER_INTERFACE_CABLE_GROMMET: Buna-N Rubber Grommets, for 1-3/8” Hole Diameter and 1/16” Material Thickness, 1” ID, pack of 10 9307K61 Routing 1 10 1 $10.08 $1.01 $10.08 $1.01 https://www.mcmaster.com/9307K61/
Cable P-clip USER_INTERFACE_CABLE_P-CLIP_0.375_ID_SS: Snug-Fit Vibration-Damping Loop Clamp, 304 Stainless Steel with Silicone Rubber Cushion, 3/8” ID, pack of 10, 17/64 mounting holes 3225T63 Routing 2 10 1 $7.00 $0.70 $7.00 $1.40 https://www.mcmaster.com/3225T63/
Keyboard Adesso: Mini keyboard with trackball Compute 1 1 1 $49.99 $49.99 $49.99 $49.99 https://m.cdw.com/product/adesso-easy-touch-mini-trackball-keyboard/1839486

AC Power Cable Compute 1 1 1 $8.15 $8.15 $8.15 $8.15 https://www.grainger.com/product/1FD82?gclid=Cj0KCQjw1qL6BRCmARIsADV9JtZk59QIAYAwMJvQFD1dzPK-rSkWwVBCeo8SBGndpEHDpp2NXDWsr9kaAo-MEALw_wcB&gucid=N:N:FPL:Free:GGL:CSM-1946:tew63h3:20501231&ef_id=Cj0KCQjw1qL6BRCmARIsADV9JtZk59QIAYAwMJvQFD1dzPK-rSkWwVBCeo8SBGndpEHDpp2NXDWsr9kaAo-MEALw_wcB:G:s&s_kwcid=AL!2966!3!264922886802!!!g!439460816581!&gucid=N:N:PS:Paid:GGL:CSM-2293:FAGP9P:20500731
Power strip Mini power strip - 3 outlet power strip with 3 ft cord 1 1 1 $3.63 $3.63 $3.63 $3.63 https://www.parts-express.com/parts-express-3-outlet-strip-with-3-ft-cord-ul-black–125-406?gclid=EAIaIQobChMImKulw4PM6wIVRymzAB1bcwgfEAQYAyABEgLhBPD_BwE

Compute Cost $419

Airway Components
CUSTOM_ID_RUBBER_GROMMET_FOR_0.5_HOLE_0.0625_MATL: Cut-to-Size Grommets, SBR Rubber, for 1/2” Hole and 1/16” Thickness, 1/64-3/8” ID, Pack of 10 2633N11 Routing 1 10 1 $10.00 $1.00 $10.00 $1.00 www.mcmaster.com/2633N11/

Oxygen DISS to 3/8” NPT Adapter (Not specified in assembly) Tubing/Adapters
Inlet manifold 1023N150_MANIFOLD_0.375_NPT_IN_0.25NPT_OUT : Straight-Flow Rectangular Manifold, 2 Outlets, 3/8 NPT Inlet x 1/4 NPT Outlet 1023N15 Tubing/Adapters 1 1 1 $24.56 $24.56 $24.56 $24.56 https://www.mcmaster.com/1023N15/
1/4” NPT Connector (male/male) PIPE_STUB_0.25_NPT_SS_W_SEALANT: Standard-Wall 304/304L Stainless Steel Pipe Nipple with Sealant, Threaded on Both Ends, 1/4 NPT, 1-1/2” Long 1455N133 Tubing/Adapters 1 1 1 $3.89 $3.89 $3.89 $3.89 https://www.mcmaster.com/1455N133/
Teflon tape PTFE thread sealant tape (1/2”) 6802K12 Tubing/Adapters 1 1 1 $2.62 $2.62 $2.62 $2.62 https://www.mcmaster.com/6802K12/
Manifold plug 1/4” NPT MANIFOLD_PLUG_0.25_NPT_SS: High-Pressure 347 Stainless Steel Pipe Fitting, Plug with Hex Drive, 1/4 NPT Male 1725K13 Tubing/Adapters 1 1 1 $4.50 $4.50 $4.50 $4.50 https://www.mcmaster.com/1725K13/
Hex nuts LN_10-32_STAINLESS_18-8: 18-8 Stainless Steel Hex Nut, 10-32 Thread Size, pack of 100 91841A195 Fixing and framing 100 1 $3.77 $0.04 $3.77 $0.00 https://www.mcmaster.com/91841A195/
Manifold washers W_10_NARROW_0.406OD_316_SS: 18-8 Stainless Steel Washer for Soft Material, Number 10 Screw Size, Narrow ASME Designation, pack of 25 92217A440 Fixing and framing 25 1 $10.16 $0.41 $10.16 $0.00 https://www.mcmaster.com/92217A440/
Fixed pressure regulator Fixed-Pressure Compressed Air Regulator (with two plugs) , 50 psi 1777K41 Flow control 1 1 1 $47.94 $47.94 $47.94 $47.94 https://www.mcmaster.com/1777K2
Push-to-connect: 1/4” NPT PUSH_CONNECT_8MM_0.25_NPTM: 1/4” NPT to push-to-connect 8mm tubing 5225K715 Tubing/Adapters 1 2 $5.48 $5.48 $10.96 $0.00 https://www.mcmaster.com/5225K715/

continues on next page

1.1. PVP Modules 101

https://www.mouser.com/ProductDetail/Raspberry-Pi/RPI4-MODBP-2GB-BULK?qs=sGAEpiMZZMspCjQQiuQ1fFuhMF5SnQS%252Ba2qMvWLE7K2IHh0t%252BecCsw%3D%3D
https://www.mouser.com/ProductDetail/Seeed-Studio/106990291?qs=sGAEpiMZZMtyU1cDF2RqUIiI0Dr66jYXGV7bLfwtXvw%3D
https://www.amazon.com/dp/B073JWXGNT/ref=twister_B07B3MFBHY?_encoding=UTF8&th=1
https://lilliputdirect.com/lilliput-779gl-capacitive-touchscreen-hdmi-monitor?search=779gl
https://lilliputdirect.com/lilliput-monitor-accessories/mounting-brackets-stands-and-arms/lilliput-monitor-stand
https://www.mouser.com/ProductDetail/molex/68786-0001/?qs=ASaot9jrY6HVNv%2F8Wfc2rQ%3D%3D&countrycode=US¤cycode=USD
https://www.mouser.com/ProductDetail/matrix-orbital/extmusb3ft/?qs=4ybA1OVEHcjRr1VgZWmnlw%3D%3D&countrycode=US¤cycode=USD
https://www.mcmaster.com/9307K61/
https://www.mcmaster.com/3225T63/
https://m.cdw.com/product/adesso-easy-touch-mini-trackball-keyboard/1839486
https://www.grainger.com/product/1FD82?gclid=Cj0KCQjw1qL6BRCmARIsADV9JtZk59QIAYAwMJvQFD1dzPK-rSkWwVBCeo8SBGndpEHDpp2NXDWsr9kaAo-MEALw_wcB&gucid=N:N:FPL:Free:GGL:CSM-1946:tew63h3:20501231&ef_id=Cj0KCQjw1qL6BRCmARIsADV9JtZk59QIAYAwMJvQFD1dzPK-rSkWwVBCeo8SBGndpEHDpp2NXDWsr9kaAo-MEALw_wcB:G:s&s_kwcid=AL!2966!3!264922886802!!!g!439460816581!&gucid=N:N:PS:Paid:GGL:CSM-2293:FAGP9P:20500731
https://www.parts-express.com/parts-express-3-outlet-strip-with-3-ft-cord-ul-black--125-406?gclid=EAIaIQobChMImKulw4PM6wIVRymzAB1bcwgfEAQYAyABEgLhBPD_BwE
https://www.mcmaster.com/1023N15/
https://www.mcmaster.com/1455N133/
https://www.mcmaster.com/6802K12/
https://www.mcmaster.com/1725K13/
https://www.mcmaster.com/91841A195/
https://www.mcmaster.com/92217A440/
https://www.mcmaster.com/1777K2
https://www.mcmaster.com/5225K715/

PVP, Release 0.2.0

Table 5 – continued from previous page
Component Description McMaster Part # (if applicable) Category Unit Qty Pkg. Qty Bulk Qty Bulk Parts Cost Unit Cost Subtotal (Bulk Parts Cost) Subtotal (Unit Parts Cost) Sourcing Link
Pneumatic Tubing Polyurethane tubing: Firm Polyurethane Rubber Tubing for Air and Water, 5 mm ID, 8 mm OD 50315K71 Tubing/Adapters 3 1 3 $0.71 $0.71 $2.13 $2.13 https://www.mcmaster.com/50315K71
Push-to-connect: 1/8” BSPT PUSH_CONNECT_FITTING_8MM_TO_0.125_BPST: Push-to-Connect Tube Fitting for Air, Straight Adapter, 8 mm Tube OD x 1/8 BSPT Male 5225K305 Tubing/Adapters 2 1 2 $5.38 $5.38 $10.76 $10.76 https://www.mcmaster.com/5225K305/
Insp proportional valve SMC PVQ31-5G-23-01N-H valve, proportional, PVQ PROPORTIONAL VALVE Flow control 1 1 1 $107.10 $107.10 $107.10 $107.10 https://www.ocpneumatics.com/smc-pvq31-5g-23-01n-h-valve-proportional-pvq-proportional-valve/
Push-to-connect: Inline T-adapter to 1/4” NPT PUSH_CONNECT_T_8MM_0.25_NPT: Push-to-Connect Tube Fitting for Air, Inline Tee Adapter, for 8 mm Tube OD x 1/4 NPT Male 5225K806 Tubing/Adapters 1 1 1 $7.58 $7.58 $7.58 $7.58 https://www.mcmaster.com/5225K806/
1/4” NPT Connector (female/female) NPTF_0.25_X_0.25_NPTF_COUPLER: CPVC Pipe Fitting for Hot Water, Straight Connector, 1/4 NPT Thread Female 4589K58 Tubing/Adapters 1 1 1 $9.84 $9.84 $9.84 $9.84 https://www.mcmaster.com/4589K58/
Pressure release valve Compact Nylon Pressure-Relief Valve for Air, 1 psi, 1/4 NPT Male 4277T52 Tubing/Adapters 1 1 1 $19.89 $19.89 $19.89 $19.89 https://www.mcmaster.com/4277T52
Oxygen sensor O2 Sensor, SS-12A (or equivalents, e.g. Analytical Industries PSR-11-917-M) Sensors 1 1 1 $59.00 $59.00 $59.00 $59.00 https://www.sensoronics.com/products/ss-12a-replaces-teledyne-r22-msa-472062
Emergency breathing (check) valve Teleflex Medical One Way Valve Flow control 1 1 1 $1.05 $1.05 $1.05 $1.05 https://serfinitymedical.com/products/teleflex-medical-one-way-valve-teleflex-medical-1665
DAR filters DAR Electrostatic filters - Large (10x) (NEED A PRESCRIPTION TO ORDER) Yes Tubing/Adapters 2 1 2 $1.72 $1.72 $3.44 $3.44 https://www.bettymills.com/dar-electrostatic-filter-large-350u5865?utm_source=cpc-strat&utm_medium=cpc&utm_campaign=parts&utm_keyword=MON58653900&utm_content=Medical&gclid=Cj0KCQjwsYb0BRCOARIsAHbLPhFDvasl2T-pp983Gj755_cJPpx-yW1j-qtVVfjvdeKrHvaog9WXQzAaAtrJEALw_wcB
Adult Respiratory Circuit w Humidifier Limb Standard resp. circuit Yes Tubing/Adapters 1 1 1 $13.00 $13.00 $13.00 $13.00 Circuit: https://orsupply.com/product/1505

Adapter / filter to connect gas sampling lines to proximal side - TOM Tubing/Adapters #DIV/0! $0.00
Gas sampling line Gas Sampling Line McKesson 16-GSL Each/1 (x3) Tubing/Adapters 3 1 3 $1.67 $1.67 $5.01 $5.01 https://heymedsupply.com/gas-sampling-line-mckesson-16-gsl-each-1/?gclid=CjwKCAjw95D0BRBFEiwAcO1KDNKq_RaPem1c2NjJTQ1T2bLXusnNQXshtMCSO_h0_i7tSfO_Mrw1NRoCkB8QAvD_BwE
Luer lock connector Sensit Luer Lock Connector from Grainger Tubing/Adapters 2 1 2 $10.25 $10.25 $20.50 $20.50 https://www.grainger.com/product/36T564?gclid=EAIaIQobChMI59a98omX6wIVgwiICR3BlQrHEAQYCiABEgJ5WPD_BwE&cm_mmc=PPC:+Google+PLA&ef_id=EAIaIQobChMI59a98omX6wIVgwiICR3BlQrHEAQYCiABEgJ5WPD_BwE:G:s&s_kwcid=AL!2966!3!281698275999!!!g!470577457359!
Luer lock filter Luer lock filter 0.2um from Promepla https://catalog.promepla.com/promepla-component/ecb15992 / https://catalog.promepla.com/uploads/medias/plan-ecb15992.pdf
Pressure sensor (for Paw) 1 PSI-D-4V-MINI Sensors 1 1 1 $32.00 $32.00 $32.00 $32.00 https://www.mouser.com/ProductDetail/Amphenol-All-Sensors/1-PSI-D1-4V-MINI?qs=BhOZL0NmoSxcjJYCCg1Awg%3D%3D
Tubing connectors Flexible Connector (Silicone Rubber) 22mm I.D. X 22mm I.D. (x6) Tubing/Adapters 2 1 2 $7.00 $7.00 $14.00 $14.00 https://www.rcmedical.com/viewProduct.cfm?productID=591
Flow sensor Disposable GE D-Lite flow sensor Tubing/Adapters 1 1 1 $4.76 $4.76 $4.76 $4.76 https://jakenmedical.com/supplies-accessories/disposable-d-lite-sensor-50-box-896952/
Luer plug Plastic Quick-Turn Tube Coupling, Nylon Plastic Caps for Plugs 51525K311 Tubing/Adapters 1 10 1 $2.60 $0.26 $2.60 $0.26 https://www.mcmaster.com/51525K311
Luer lock connector for D-Lite Quick Turn Tube Coupling for Air - 316 Stainless Steel Socket Connector 5194K32 Tubing/Adapters 1 1 1 $22.68 $22.68 $22.68 $22.68 https://www.mcmaster.com/5194K32/
Differential pressure sensor for flow 5 INCH-D2-P4V-MINI Sensors 1 1 1 $52.70 $52.70 $52.70 $52.70 https://www.mouser.com/ProductDetail/Amphenol-All-Sensors/5-INCH-D2-P4V-MINI?qs=%2Fha2pyFaduhsP4sNEBOe%2FQFZkD803XhnXMJBb3vmG3Pgxr%2F1EbJo8%252BLI9cfIY1%2Fz
3/4” NPT Connector (male/male) Thick-Wall Polypropylene Pipe Fitting for Chemicals, Connector with Hex Body, 3/4 NPT Male 46825K31 Tubing/Adapters 2 1 2 $1.53 $1.53 $3.06 $3.06 https://www.mcmaster.com/46825K31/
Exp solenoid valve SMC VXZ250HGB valve, 20A, NORMALLY OPEN, C37, Port 3/4 (NPT), Orifice 20 Flow control 1 1 1 $115.10 $115.10 $115.10 $115.10 https://www.smcpneumatics.com/VXZ250HGB.html
Exp solenoid brackets T-Slotted Framing, Silver Flush 90 Degree Angle Bracket for 1” High Rail 3136N157 Fixing and framing 2 1 2 $11.22 $11.22 $22.44 $22.44 https://www.mcmaster.com/3136N157/

Framing/Structural Components
80/20 (x4) T-Slotted Framing, Single 4-Slot Rail, Silver, 1” High x 1” Wide, Solid, 3’ Long - 4x 47065T101 Fixing and framing 4 1 4 $10.57 $10.57 $42.28 $42.28 https://www.mcmaster.com/47065T101
80/20 gusset bracket (x18) Silver Gusset Bracket, 1” Long for 1” High Rail T-Slotted Framing x18 47065T663 Fixing and framing 18 1 18 $6.54 $6.54 $117.72 $117.72 https://www.mcmaster.com/47065T663
80/20 rail (x6) T-Slotted Framing, Single 4-Slot Rail, Silver, 1” High x 1” Wide, Solid, 1’ Long x6 47065T101 Fixing and framing 6 1 6 $5.84 $5.84 $35.04 $35.04 https://www.mcmaster.com/47065T101
80/20 button head nuts (packs of 25, x2) End-feed single nuts for T-Slotted framing: T-Slotted Framing, End-Feed Single Nut, 1/4”-20 Thread 47065T905 Fixing and framing 25 2 $5.62 $0.22 $11.24 $0.00 https://www.mcmaster.com/47065T905/
Button-head hex screws, pack of 50 BHCS_0.25-20x0.412_SS: 18-8 Stainless Steel Button Head Hex Drive Screw, 1/4”-20 Thread Size, 7/16” Long, Pack of 50 92949A833 Fixing and framing 50 1 $6.03 $0.12 $6.03 $0.00 https://www.mcmaster.com/92949A833/
Socket head screw, pack of 100 SHCS_M3_X_0.5_6MM_SS: 18-8 Stainless Steel Socket Head Screw, M3 x 0.5 mm Thread, 6 mm Long, pack of 100 91292A111 Fixing and framing 100 1 $9.66 $0.10 $9.66 $0.00 https://www.mcmaster.com/91292A111/
Button head screws (long), pack of 10 BHCS_10-32_X_2_SS: 18-8 Stainless Steel Button Head Hex Drive Screw, 10-32 Thread Size, 2” Long, pack of 10 92949A275 Fixing and framing 10 1 $2.65 $0.27 $2.65 $0.00 https://www.mcmaster.com/92949A275/
Button head screws (short), pack of 25 BHCS_M6_X_1_8MM_SS: Button Head Hex Drive Screw, Passivated 18-8 Stainless Steel, M6 x 1 mm Thread, 8mm Long, pack of 25 92095A239 Fixing and framing 25 1 $8.40 $0.34 $8.40 $0.00 https://www.mcmaster.com/92095A239/
HDPE sheeting Moisture-Resistant HDPE Sheet, 12” x 48” x 1/16” 8619K423 Fixing and framing 2 1 2 $10.64 $10.64 $21.28 $21.28 https://www.mcmaster.com/8619K423
Lifting handle LIFTING_HANDLE: Oval Pull Handle, Unthreaded Hole, Black Aluminum, 4-9/16” Center-to-Center Width 5190A21 Fixing and framing 2 1 2 $14.38 $14.38 $28.76 $28.76 https://www.mcmaster.com/5190A21/
Screws for lifting handle SHCS_0.25-20x0.75_Gr8_ASTM_F1136, pack of 50 91274A164 Fixing and framing 50 1 $9.69 $0.19 $9.69 $0.00 https://www.mcmaster.com/91274A164/
Leveling mount (4 feet) TLA_LEVELING_MOUNT: Light Duty Leveling Mount, 1” Long 1/4”-20 Threaded Stud, pack of 4 23015T82 Fixing and framing 1 4 1 $1.89 $0.47 $1.89 $0.47 https://www.mcmaster.com/23015T82/
Nuts for leveling mount LN_THIN_0.25-20_STAINLESS: 18-8 Stainless Steel Thin Hex Nut, 1/4”-20 Thread Size, pack of 100 91847A029 Fixing and framing 100 1 $4.41 $0.04 $4.41 $0.00 https://www.mcmaster.com/91847A029/
PETG for 3d printing ~1 kg spool of PETG Tubing/Adapters 1 1 1 $30.00 $30.00 $30.00 $30.00

Structural $329
Electronics
Standoffs Standoffs & Spacers M2.5 x 16mm HEX M/F BRASS 4.9mm A/F Electronics 8 1 8 $0.47 $3.76 $3.76 https://www.mouser.com/ProductDetail/Keystone-Electronics/24424?qs=%2Fha2pyFadujGjYnOBX3ZIG5%252BNlfnctDXUaVF01IeI1E%3D
Meanwell DC Power Supply DIN Rail Power Supplies 150W 24V 5A EN55022 Class B Electronics 1 1 1 $30.66 $30.66 $0.00 https://www.mouser.com/ProductDetail/MEAN-WELL/NDR-120-24?qs=sGAEpiMZZMvkjJSSRowFE%252BMaPtHpNQit89EjeOStv9CBsXX2JvUmCQ%3D%3D
DIN Rail Aluminum DIN 3 Rail, 10mm Deep, 1m Long 8961K17 Electronics 1 1 1 $7.74 $7.74 $0.00 https://www.mcmaster.com/8961K17/
DIN washers W_0.25_FLAT_THICK_GR8_YELLOW_ZINC: Zinc Yellow-Chromate Plated Steel Oversized Washer, Grade 8, for 1/4” Screw Size, 0.281” ID, 0.625” OD, package of 100 98025A029 Electronics 6 100 1 $13.94 $13.94 $0.00 https://www.mcmaster.com/98025A029/
Sensor board (excluding pressure sensors)
2-layer PCB Advanced Circuits 2 layer board Electronics 1 3 3 $33.00 $99.00 $33.00 https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html
12-bit ADC Adafruit Data Conversion IC Development Tools ADS1015 Breakout 12-Bit ADC Electronics 1 1 1 $9.95 $10.00 $9.95 https://www.mouser.com/ProductDetail/Adafruit/1083?qs=GURawfaeGuCmI2li4B6pKg%3D%3D
Voltage splitter U1 TL7660, 8-DIP package Electronics 1 1 1 $1.55 $2.00 $1.55 https://www.digikey.com/product-detail/en/texas-instruments/TL7660CP/296-21857-5-ND/1629031

continues on next page

102 Chapter 1. Software

https://www.mcmaster.com/50315K71
https://www.mcmaster.com/5225K305/
https://www.ocpneumatics.com/smc-pvq31-5g-23-01n-h-valve-proportional-pvq-proportional-valve/
https://www.mcmaster.com/5225K806/
https://www.mcmaster.com/4589K58/
https://www.mcmaster.com/4277T52
https://www.sensoronics.com/products/ss-12a-replaces-teledyne-r22-msa-472062
https://serfinitymedical.com/products/teleflex-medical-one-way-valve-teleflex-medical-1665
https://www.bettymills.com/dar-electrostatic-filter-large-350u5865?utm_source=cpc-strat&utm_medium=cpc&utm_campaign=parts&utm_keyword=MON58653900&utm_content=Medical&gclid=Cj0KCQjwsYb0BRCOARIsAHbLPhFDvasl2T-pp983Gj755_cJPpx-yW1j-qtVVfjvdeKrHvaog9WXQzAaAtrJEALw_wcB
https://orsupply.com/product/1505
https://heymedsupply.com/gas-sampling-line-mckesson-16-gsl-each-1/?gclid=CjwKCAjw95D0BRBFEiwAcO1KDNKq_RaPem1c2NjJTQ1T2bLXusnNQXshtMCSO_h0_i7tSfO_Mrw1NRoCkB8QAvD_BwE
https://www.grainger.com/product/36T564?gclid=EAIaIQobChMI59a98omX6wIVgwiICR3BlQrHEAQYCiABEgJ5WPD_BwE&cm_mmc=PPC:+Google+PLA&ef_id=EAIaIQobChMI59a98omX6wIVgwiICR3BlQrHEAQYCiABEgJ5WPD_BwE:G:s&s_kwcid=AL!2966!3!281698275999!!!g!470577457359
https://catalog.promepla.com/promepla-component/ecb15992
https://catalog.promepla.com/uploads/medias/plan-ecb15992.pdf
https://www.mouser.com/ProductDetail/Amphenol-All-Sensors/1-PSI-D1-4V-MINI?qs=BhOZL0NmoSxcjJYCCg1Awg%3D%3D
https://www.rcmedical.com/viewProduct.cfm?productID=591
https://jakenmedical.com/supplies-accessories/disposable-d-lite-sensor-50-box-896952/
https://www.mcmaster.com/51525K311
https://www.mcmaster.com/5194K32/
https://www.mouser.com/ProductDetail/Amphenol-All-Sensors/5-INCH-D2-P4V-MINI?qs=%2Fha2pyFaduhsP4sNEBOe%2FQFZkD803XhnXMJBb3vmG3Pgxr%2F1EbJo8%252BLI9cfIY1%2Fz
https://www.mcmaster.com/46825K31/
https://www.smcpneumatics.com/VXZ250HGB.html
https://www.mcmaster.com/3136N157/
https://www.mcmaster.com/47065T101
https://www.mcmaster.com/47065T663
https://www.mcmaster.com/47065T101
https://www.mcmaster.com/47065T905/
https://www.mcmaster.com/92949A833/
https://www.mcmaster.com/91292A111/
https://www.mcmaster.com/92949A275/
https://www.mcmaster.com/92095A239/
https://www.mcmaster.com/8619K423
https://www.mcmaster.com/5190A21/
https://www.mcmaster.com/91274A164/
https://www.mcmaster.com/23015T82/
https://www.mcmaster.com/91847A029/
https://www.mouser.com/ProductDetail/Keystone-Electronics/24424?qs=%2Fha2pyFadujGjYnOBX3ZIG5%252BNlfnctDXUaVF01IeI1E%3D
https://www.mouser.com/ProductDetail/MEAN-WELL/NDR-120-24?qs=sGAEpiMZZMvkjJSSRowFE%252BMaPtHpNQit89EjeOStv9CBsXX2JvUmCQ%3D%3D
https://www.mcmaster.com/8961K17/
https://www.mcmaster.com/98025A029/
https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html
https://www.mouser.com/ProductDetail/Adafruit/1083?qs=GURawfaeGuCmI2li4B6pKg%3D%3D
https://www.digikey.com/product-detail/en/texas-instruments/TL7660CP/296-21857-5-ND/1629031

PVP, Release 0.2.0

Table 5 – continued from previous page
Component Description McMaster Part # (if applicable) Category Unit Qty Pkg. Qty Bulk Qty Bulk Parts Cost Unit Cost Subtotal (Bulk Parts Cost) Subtotal (Unit Parts Cost) Sourcing Link
Instrumentation amplifier U2 INA126PA, 8-DIP package Electronics 1 1 1 $3.18 $4.00 $3.18 https://www.digikey.com/product-detail/en/texas-instruments/INA126PA/INA126PA-ND/300992
R3, sensor $0.00
40 pin Pi header J1 Raspberry pi 40 pin stacking header Electronics 1 1 1 $2.95 $3.00 $2.95 https://www.digikey.com/product-detail/en/adafruit-industries-llc/1979/1528-1783-ND/6238003
4x1 header J2 male pin header 1x04 P2.54mm Electronics 360 pins 4 pins 1 $4.95 $5.00 $0.06 https://www.digikey.com/product-detail/en/adafruit-industries-llc/4150/1528-2922-ND/10123801
2x1 header J3 male pin header 1x02 P2.54mm Electronics 360 pins 2 pins 1 $4.95 $5.00 $0.03
Oxygen sensor cable (J4) 3 pin fan cable extension, 36”, ribbon style Electronics 1 $1.99 $2.00 $1.99 https://www.coolerguys.com/products/3-pin-fan-cable-extension-12-thru-72-inches?variant=17666421509
330 Ohm resistor R1 330 Ohm resistor, through hole, 1/4 Watt Electronics 1 1 1 $0.10 $1.00 $0.10 https://www.digikey.com/product-detail/en/stackpole-electronics-inc/CF14JT330R/CF14JT330RCT-ND/1830338
Capacitors C1,C2 10 uF, 25V, electrolytic radial Electronics 1 1 1 $0.21 $1.00 $0.21 https://www.digikey.com/product-detail/en/panasonic-electronic-components/ECA-1EM100B/P19522CT-ND/6109420
Actuator board
2-layer PCB Advanced Circuits 2 layer board Electronics 1 3 3 $33.00 $99.00 $33.00 https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html
5V DC/DC Converter 490-PDQE15-Q24-S5-D Electronics 1 1 1 $19.12 $20.00 $19.12 https://www.mouser.com/ProductDetail/CUI-Inc/PDQE15-Q24-S5-D?qs=%2Fha2pyFaduiL94u0Ef2I7K4U1Mc9B6IPlz0S4%252BeNn6w9pBF%2FNnZWZTmWI4mUuuL4
Darlington array U1 ULN2003AN IC PWR RELAY 7NPN 1:1 16DIP Electronics 1 1 2 $0.66 $2.00 $1.32 https://www.mouser.com/ProductDetail/Texas-Instruments/ULN2003AN?qs=FOlmdCx%252BAA1wYQ1G8c8hpQ%3D%3D
40 pin Pi header J1 Raspberry pi 40 pin stacking header Electronics 1 1 1 $2.95 $3.00 $2.95 https://www.digikey.com/product-detail/en/adafruit-industries-llc/1979/1528-1783-ND/6238003
Screw terminals J2, J3, J4 5.08 mm pitch 2-pin screw terminal block connector, PCB mount Electronics 1 1 3 $1.04 $4.00 $3.12 https://www.digikey.com/product-detail/en/te-connectivity-amp-connectors/282837-2/A113320-ND/2187973
2x1 header J5 male pin header 1x02 P2.54mm Electronics 360 pins 2 pins 1 $4.95 $5.00 $0.03
Capacitor C1 100 uF, 16V, electrolytic radial Electronics 1 1 1 $0.32 $1.00 $0.32 https://www.digikey.com/product-detail/en/panasonic-electronic-components/EEU-FR1C101B/P15330CT-ND/3072210
Capacitors C2,C3 6.8 uF, 50V, electrolytic radial Electronics 1 1 2 $0.20 $1.00 $0.40 https://www.digikey.com/product-detail/en/panasonic-electronic-components/EEA-GA1H6R8/P14509-ND/2504598
Speaker Logitech Z50 speaker Electronics 1 1 1 $19.99 $20.00 https://www.amazon.com/Z50-smartphone-tablet-laptop-Grey/dp/B00EZ9XLF8/ref=sr_1_1?dchild=1&hvadid=78408975043567&hvbmt=be&hvdev=c&hvqmt=e&keywords=logitech+z50&qid=1595253882&sr=8-1&tag=mh0b-20

Electronics $347
Total Cost (with screen and optional accessories) $1,753.57 $1,415.24

Specialized Tools
M16 tap HSS Tap, Bottoming Chamfer, M16 x 1.0 mm Thread (for mounting O2 Sensor) 26015A236 Tools and testing 1 $46.63 $47.00 https://www.mcmaster.com/26015A236
1/4” NPT tap Uncoated High-Speed Steel Pipe and Conduit Thread Tap High-Speed Steel, Plug Chamfer, 1/4 NPT, 2-7/16” Overall Length 2525A173 Tools and testing 1 $24.94 $25.00 https://www.mcmaster.com/2525A173-2525A173
3/4” NPT tap Uncoated High-Speed Steel Pipe and Conduit Thread Tap: High-Speed Steel, Plug Chamfer, 3/4 NPT, 3-1/4” Overall Length 2525A176 Tools and testing 1 $70.16 $71.00 https://www.mcmaster.com/2525A176/
1/4”-28 tap 1/4”-28 TPI (1/4” UNF) for filter mount Tools and testing 1 $6.99 $6.99 https://www.mcmaster.com/26955A88/
Ingmar QuickLung Test Bellows (Optional) variable resistance/compliance test lung for testing only Tools and testing 1 $1,500.00 $1,500.00 https://www.ingmarmed.com/product/quicklung/

Not on the List:
PETG for 3d printing ~1 kg spool of PETG Tubing/Adapters 1 $30.00 $30.00
Commercial PEEP valves Alternative: Medium silicone film for printed PEEP valve: https://www.mcmaster.com/86045K58 Flow control
Adult Test Lung Standard adult test lung (Many options here) Tools and testing $30.00 https://www.ebay.com/itm/Adult-Test-Lung-LNG600P-Newport-Medical-Instruments-a-division-of-Covidien/264679192553?hash=item3da01bf7e9:g:9FEAAOSw~4hbtoaY&fbclid=IwAR35qedvGn5JODcB-F5Kurw0ZH11KOdH6UpmUypnj2lWZcv5GzIfVlEDSaw
Air compressor for initial testing https://www.dewalt.com/products/storage-and-gear/air-compressors/16-hp-continuous-225-psi-45-gallon-compressor/d55146

1.1.10 CAD

1.1.10.1 3D Printed Parts

Individual 3D printed parts may be downloaded here:

• Inlet manifold bracket - [.stl]

• Proportional valve bracket - [.stl]

• Sensor atrium manifold - [.stl]

• Expiratory DAR filter bracket - [.stl]

• 22mm to 0.75 NPTM adapter (x2) - [.stl]

• Expiratory outlet bracket to PEEP - [.stl]

• Luer lock filter mount - [.stl]

1.1. PVP Modules 103

https://www.digikey.com/product-detail/en/texas-instruments/INA126PA/INA126PA-ND/300992
https://www.digikey.com/product-detail/en/adafruit-industries-llc/1979/1528-1783-ND/6238003
https://www.digikey.com/product-detail/en/adafruit-industries-llc/4150/1528-2922-ND/10123801
https://www.coolerguys.com/products/3-pin-fan-cable-extension-12-thru-72-inches?variant=17666421509
https://www.digikey.com/product-detail/en/stackpole-electronics-inc/CF14JT330R/CF14JT330RCT-ND/1830338
https://www.digikey.com/product-detail/en/panasonic-electronic-components/ECA-1EM100B/P19522CT-ND/6109420
https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html
https://www.mouser.com/ProductDetail/CUI-Inc/PDQE15-Q24-S5-D?qs=%2Fha2pyFaduiL94u0Ef2I7K4U1Mc9B6IPlz0S4%252BeNn6w9pBF%2FNnZWZTmWI4mUuuL4
https://www.mouser.com/ProductDetail/Texas-Instruments/ULN2003AN?qs=FOlmdCx%252BAA1wYQ1G8c8hpQ%3D%3D
https://www.digikey.com/product-detail/en/adafruit-industries-llc/1979/1528-1783-ND/6238003
https://www.digikey.com/product-detail/en/te-connectivity-amp-connectors/282837-2/A113320-ND/2187973
https://www.digikey.com/product-detail/en/panasonic-electronic-components/EEU-FR1C101B/P15330CT-ND/3072210
https://www.digikey.com/product-detail/en/panasonic-electronic-components/EEA-GA1H6R8/P14509-ND/2504598
https://www.amazon.com/Z50-smartphone-tablet-laptop-Grey/dp/B00EZ9XLF8/ref=sr_1_1?dchild=1&hvadid=78408975043567&hvbmt=be&hvdev=c&hvqmt=e&keywords=logitech+z50&qid=1595253882&sr=8-1&tag=mh0b-20
https://www.mcmaster.com/26015A236
https://www.mcmaster.com/2525A173-2525A173
https://www.mcmaster.com/2525A176/
https://www.mcmaster.com/26955A88/
https://www.ingmarmed.com/product/quicklung/
https://www.mcmaster.com/86045K58
https://www.ebay.com/itm/Adult-Test-Lung-LNG600P-Newport-Medical-Instruments-a-division-of-Covidien/264679192553?hash=item3da01bf7e9:g:9FEAAOSw~4hbtoaY&fbclid=IwAR35qedvGn5JODcB-F5Kurw0ZH11KOdH6UpmUypnj2lWZcv5GzIfVlEDSaw
https://www.dewalt.com/products/storage-and-gear/air-compressors/16-hp-continuous-225-psi-45-gallon-compressor/d55146

PVP, Release 0.2.0

Fig. 13: Sample Prusa project with 3D printed components

• Raspberry Pi DIN rail mount (x2) - [.stl]

• Rear panel vent (x2) - [.stl]

• 22mm to commercial PEEP adapter - [.stl]

Optional RPi DIN rail mount alternative, if your printer cannot handle the feature resolution on the original DIN rail
mount:

• ALTERNATIVE Raspberry Pi DIN rail mount (x2) - [.stl]

Download all parts:

• All components - [.zip]

Printing tips: Be sure to maintain high infill for airway components: ideally, use 4 wall-layers (vertical layers), minimum
40% infill, and 4 layers on both the top and bottom. Parts should be leak-tested prior to installation, for instance, with
a stopper and water bath. Most of our test prints were performed using PLA, and without any supports or rafts, since
these are challenging to remove later. Supports should not be necessary provided the parts are oriented mindfully on
the build plate. Also, try to keep cylindrical components oriented vertically (so that the circle is traced on the build
plate); this will improve circularity of the chamber.

For PRUSA users, we provide an example project, demonstrating part orientation:

• Sample Prusa project - [.3mf]

104 Chapter 1. Software

PVP, Release 0.2.0

1.1.10.2 Enclosure

The side, top, and bottom panels are made out of 1/16” HPDE sheeting. Laser cut, or cut by hand, two of the
“SIDE_IP_PANEL”, and one of each of the rest! We use a perforated HPDE for the bottom panel only; the rest are
solid HPDE.

• Bottom panel (perforated) - [.dxf]

• Front panel - [.dxf]

• Rear panel - [.dxf]

• Side panel (x2) - [.dxf]

• Top panel - [.dxf]

Download all .DXF files:

• All DXF files - [.zip]

1.1.11 Software Overview

PVP is modularly designed to facilitate future adaptation to new hardware configurations and ventilation modes. APIs
were designed for each of the modules to a) make them easily inspected and configured and b) make it clear to future
developers how to adapt the system to their needs.

PVP runs as multiple independent processes The GUI provides an interface to control and monitor ventilation, and
the controller process handles the ventilation logic and interfaces with the hardware. Inter-process communication
is mediated by a coordinator module via xml-rpc. Several ’common’ modules facilitate system configuration and
constitute the inter-process API. We designed the API around a uni-fied, configurablevaluesmodule that allow the GUI
andcontroller to be reconfigured while also ensuring system robustness and simplicity.

• The GUI and Coordinator run in the first process, receive user input, display system status, and relay
ControlSetting s to the Controller .

• At launch, the Coordinator spawns a Controller that runs the logic of the ventilator based on control values from
the GUI.

• The Controller communicates with a third pigpiod process which communicates with the ventilation hardware

PVP is configured by

• The Values module parameterizes the different sensor and control values displayed by the GUI and used by the
controller

• The Prefs module creates a prefs.json file in ~/pvp that defines user-specific preferences.

PVP is launched like:

python3 -m pvp.main

And launch options can be displayed with the --help flag.

1.1. PVP Modules 105

http://abyz.me.uk/rpi/pigpio/

PVP, Release 0.2.0

1.1.12 Folder Structure

The repository is organized as follows:

• pvp/assets/ contains technical information like CAD drawings, circuit diagrams.

• pvp/data/ contains information for calibrating sensors; data and information.

• pvp/_docs and pvp/docs is raw, and built documentation.

• pvp/tests contains automated tests for all software modules.

• pvp/sandbox is experimental code, that is not necessary to operate pvp. Place your toy programs here.

• pvp/pvp is the main code. It contains individual files for all modules of PVP1. Binary files like audio/graphics
are deposited with the respective module, and not collected in a central site.

1.1.12.1 PVP Modules

1.1.13 GUI

1.1.13.1 Main GUI Module

1.1.13.2 GUI Widgets

Control Panel

The Control Panel starts and stops ventilation and controls runtime options

Alarm Bar

Display

Plot

Components

Dialog

1.1.13.3 GUI Stylesheets

Data:

MONITOR_UPDATE_INTERVAL inter-update interval (seconds) for Monitor

Functions:

set_dark_palette(app) Apply Dark Theme to the Qt application instance.

pvp.gui.styles.MONITOR_UPDATE_INTERVAL = 0.5
inter-update interval (seconds) for Monitor

106 Chapter 1. Software

PVP, Release 0.2.0

Type (float)

pvp.gui.styles.set_dark_palette(app)
Apply Dark Theme to the Qt application instance.

borrowed from https://github.com/gmarull/qtmodern/blob/master/qtmodern/styles.py
Args: app (QApplication): QApplication instance.

The GUI is written using PySide2 and consists of one main PVP_Gui object that instantiates a series of GUI Wid-
gets. The GUI is responsible for setting ventilation control parameters and sending them to the controller (see
set_control()), as well as receiving and displaying sensor values (get_sensors()).

The GUI also feeds the Alarm_Manager SensorValues objects so that it can compute alarm state. The
Alarm_Manager reciprocally updates the GUI with Alarm s (PVP_Gui.handle_alarm()) and Alarm limits
(PVP_Gui.limits_updated()).

The main polling loop of the GUI is PVP_Gui.update_gui() which queries the controller for new SensorValues
and distributes them to all listening widgets (see method documentation for more details). The rest of the GUI is event
driven, usually with Qt Signals and Slots.

The GUI is configured by the values module, in particular it creates

• Display widgets in the left “sensor monitor” box from all Value s in DISPLAY_MONITOR ,

• Display widgets in the right “control” box from all Value s in DISPLAY_CONTROL , and

• Plot widgets in the center plot box from all Value s in PLOT

The GUI is not intended to be launched alone, as it needs an active coordinator to communicate with the controller
process and a few prelaunch preparations (launch_gui()). PVP should be started like:

python3 -m pvp.main

1.1. PVP Modules 107

https://docs.python.org/3/library/functions.html#float
https://github.com/gmarull/qtmodern/blob/master/qtmodern/styles.py
https://wiki.qt.io/Qt_for_Python

PVP, Release 0.2.0

1.1.13.4 Module Overview

1.1.13.5 Screenshot

1.1.14 Controller

1.1.14.1 Purpose of the Controller

Shown above is a typical respiratory waveform (without averaging) as produced with PVP1. Blue is the recorded
pressure, orange is the flow out of the system. Note that airflow (and also oxygen concentration) are only measured
during expiration, so that the main control-loop during inspiration runs as fast as possible, and is not slowed down

108 Chapter 1. Software

PVP, Release 0.2.0

by communication delays. Pressure is recorded continuously. Empirically, the Raspberry pi allowed for the primary
control loop to run at speeds of ~5ms per loop, which was considerably faster than all hardware delays (i.e. the time it
takes for a mechanical, physical valve to open or close; see main manuscript).

The purpose of the controller is to produce a breath waveform, as the one shown above. More specifically, it’s job is to
reach a certain target-pressure (PIP), and to hold that pressure for a certain amount of time. These numbers are provided
by the user via thee UI. Exhalation is passive, and PEEP pressure is mechanically controlled with a spring-valve.

Conceptually, the controller is written as a hybrid system of state and PID control. During inspiration, it actively controls
pressure with a simple PID controller. That means that during inspiration, it measures the deviation of the pressure-
is-vale from the pressure-target-value, and depending an that distance (and its integral and derivative), it adjusts the
opening of the inspiratory valve. Expiration was then instantiated by closing the inspiratory, and opening the expiratory
valve to passively release PIP pressure as fast as possible. After reaching PEEP, the controller opens the inspiratory
valve slightly to sustain a small flow during PEEP, using the aforementioned manually operated PEEP-valve. We found,
empirically, that a combination of proportional and integral term worked best across different physical lung settings.

The controller was also built to allow the user to adjust flow through the system. This is done by a linear correction of
the proportional-term. With this adjustment, the user can manipulate the rise-time of the pressure waveform.

In addition to this core function, the controller module continuously monitors for autonomous breaths, high airway
pressure, and general system status. Autonomous breathing was detected by transient pressure drops below PEEP. A
detected breath triggered a new breath cycle. High airway pressure is defined as exceeding a certain pressure for a
certain time (as to not be triggered by a cough). This event triggered an alarm, and an immediate release of air to drop
to a safe pressure and not to exceed PIP. Both of these functionalities are fast, and respond, at the latest, within few
hundred milliseconds. The controller also assesses whether numerical values and sensor readings are reasonable, and
changing over time. If this is not the case, it raises an technical alarm. All alarms are collected and maintained by an
intelligent alarm manager, that provides the UI with the alarms to display in order of their importance.

The final functionality of the control module is the estimation of VTE (VTE stands for exhaled tidal volume), which
is thee volume of air that made it in- and out of the lung. We estimate this number by integrating the expiratory flow
during expiration, and subtracting the baseline flow used to sustain PEEP (details in the accompanying manuscript):

1.1.14.2 Architecture of the Controller

In terms of software components, the Controller consists of one main controller class, that is instantiated in its
own thread. This object receives sensor-data from HAL, and computes control parameters, to change the mechanical
position of valves. The Controller also receives ventilation control parameters (see set_control()). All exchanged
variables are mutex’d.

The Controller also feeds the Logger a continuous stream of SensorValues objects so as to store high-temporal
resolution data, including the control signals.

The main control loop is pvp.controller._start_mainloop() which queries the Hardware for new variables,
and performs a PID update using .pvp.controller._PID_update().

The Controller is configured by the values module,

The Controller can be launched alone, but was not intended to be launched alone. The alarm functionality requires the
UI.

Classes:

ControlModuleBase([save_logs, flush_every]) Abstract controller class for simulation/hardware.
ControlModuleDevice([save_logs, ...]) Uses ControlModuleBase to control the hardware.
Balloon_Simulator(peep_valve) Physics simulator for inflating a balloon with an attached

PEEP valve.
ControlModuleSimulator([save_logs, ...]) Controlling Simulation.

1.1. PVP Modules 109

https://en.wikipedia.org/wiki/PID_controller

PVP, Release 0.2.0

Functions:

get_control_module([sim_mode, simulator_dt]) Generates control module.

class pvp.controller.control_module.ControlModuleBase(save_logs: bool = False, flush_every: int =
10)

Bases: object

Abstract controller class for simulation/hardware.

1. General notes: All internal variables fall in three classes, denoted by the beginning of the variable:

• COPY_varname: These are copies (for safe threading purposes) that are regularly sync’ed with internal
variables.

• __varname: These are variables only used in the ControlModuleBase-Class

• _varname: These are variables used in derived classes.

2. Set and get values. Internal variables should only to be accessed though the set_ and get_ functions.

These functions act on COPIES of internal variables (__ and _), that are
sync’d every few iterations. How often this is done is adjusted by the variable
self._NUMBER_CONTROLL_LOOPS_UNTIL_UPDATE. To avoid multiple threads manipulat-
ing the same variables at the same time, every manipulation of COPY_ is surrounded by a thread
lock.

Public Methods:
• get_sensors(): Returns a copy of the current sensor values.

• get_alarms(): Returns a List of all alarms, active and logged

• get_control(ControlSetting): Sets a controll-setting. Is updated at latest within
self._NUMBER_CONTROLL_LOOPS_UNTIL_UPDATE

• get_past_waveforms(): Returns a List of waveforms of pressure and volume during at the last N breath
cycles, N<self. _RINGBUFFER_SIZE, AND clears this archive.

• start(): Starts the main-loop of the controller

• stop(): Stops the main-loop of the controller

• set_control(): Set the control

• is_running(): Returns a bool whether the main-thread is running

• get_heartbeat(): Returns a heartbeat, more specifically, the continuously increasing iteration-number
of the main control loop.

Initializes the ControlModuleBase class.

Parameters
• save_logs (bool, optional) – Should sensor data and controls should be saved with the
DataLogger? Defaults to False.

• flush_every (int, optional) – Flush and rotate logs every n breath cycles. Defaults to
10.

Raises alert – [description]

110 Chapter 1. Software

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PVP, Release 0.2.0

Methods:

__init__([save_logs, flush_every]) Initializes the ControlModuleBase class.
_initialize_set_to_COPY() Makes a copy of internal variables.
_sensor_to_COPY()

_controls_from_COPY()

get_sensors() A method callable from the outside to get a copy of
sensorValues

get_alarms() A method callable from the outside to get a copy of
the alarms, that the controller checks: High airway
pressure, and technical alarms.

set_control(control_setting) A method callable from the outside to set alarms.
get_control(control_setting_name) A method callable from the outside to get current

control settings.
set_breath_detection(breath_detection)

get_breath_detection() Return current state of autonomous breath detection
_get_control_signal_in() Produces the INSPIRATORY control-signal that has

been calculated in __calculate_control_signal_in(dt)
_get_control_signal_out() Produces the EXPIRATORY control-signal for the

different states, i.e. open/close.
_control_reset() Resets the internal controller cycle to zero, i.e.

restarts the breath cycle.
_PID_update(dt) This instantiates the PID control algorithms. During

the breathing cycle, it goes through the four states:
1) Rise to PIP, speed is controlled by flow (variable:
__SET_PIP_GAIN) 2) Sustain PIP pressure 3) Quick
fall to PEEP 4) Sustaint PEEP pressure Once the cy-
cle is complete, it checks the cycle for any alarms,
and starts a new one. A record of pressure/volume
waveforms is kept and saved.

get_past_waveforms() Public method to return a list of past waveforms from
__cycle_waveform_archive. Note: After calling this
function, archive is emptied! The format is - Returns
a list of [Nx3] waveforms, of [time, pressure, volume]
- Most recent entry is waveform_list[-1].

_start_mainloop() Prototype method to start main PID loop.
start() Method to start _start_mainloop as a thread.
stop() Method to stop the main loop thread, and close the

logfile.
is_running() Public Method to assess whether the main loop thread

is running.
get_heartbeat() Returns an independent heart-beat of the controller,

i.e. the internal loop counter incremented in
_start_mainloop.

__init__(save_logs: bool = False, flush_every: int = 10)
Initializes the ControlModuleBase class.

Parameters
• save_logs (bool, optional) – Should sensor data and controls should be saved with

1.1. PVP Modules 111

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PVP, Release 0.2.0

the DataLogger? Defaults to False.

• flush_every (int, optional) – Flush and rotate logs every n breath cycles. Defaults
to 10.

Raises alert – [description]

_initialize_set_to_COPY()
Makes a copy of internal variables. This is used to facilitate threading

_sensor_to_COPY()

_controls_from_COPY()

__comptest(phase, ls, selector)
Helper function to identify the index the first occurence of a number in list exceeding threshold, and returns
phase[idx]

Parameters
• phase (array) – a list of numbers

• list (array) – array of bools with same length as phase

• selector (string) – ‘first’ or ‘last’ whichever is wanted

Returns phase[idx] where idx is first, or last point where numbers in list exceed threshold

Return type float

__analyze_last_waveform()

This goes through the last waveform, and updates the internal variables: VTE, PEEP, PIP,
PIP_TIME, I_PHASE, FIRST_PEEP and BPM.

get_sensors()→ pvp.common.message.SensorValues
A method callable from the outside to get a copy of sensorValues

Returns A set of current sensorvalues, handeled by the controller.

Return type SensorValues

get_alarms()→ Union[None, Tuple[pvp.alarm.alarm.Alarm]]
A method callable from the outside to get a copy of the alarms, that the controller checks: High airway
pressure, and technical alarms.

Returns A tuple of alarms

Return type typing.Union[None, typing.Tuple[Alarm]]

set_control(control_setting: pvp.common.message.ControlSetting)
A method callable from the outside to set alarms. This updates the entries of COPY with new control
values.

Parameters control_setting (ControlSetting) – [description]

get_control(control_setting_name: pvp.common.values.ValueName)→
pvp.common.message.ControlSetting

A method callable from the outside to get current control settings. This returns values of COPY to the
outside world.

Parameters control_setting_name (ValueName) – The specific control asked for

Returns ControlSettings-Object that contains relevant data

Return type ControlSetting

112 Chapter 1. Software

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

PVP, Release 0.2.0

set_breath_detection(breath_detection: bool)

get_breath_detection()→ bool
Return current state of autonomous breath detection

Returns bool

__get_PID_error(ytarget, yis, dt, RC)
Calculates the three terms for PID control. Also takes a timestep “dt” on which the integral-term is
smoothed.

Parameters
• ytarget (float) – target value of pressure

• yis (float) – current value of pressure

• dt (float) – timestep

• RC (float) – time constant for calculation of integral term.

__calculate_control_signal_in(dt)

Calculates the PID control signal by:
• Combining the the three gain parameters.

• And smoothing the control signal with a moving window of three frames (~10ms)

Parameters dt (float) – timestep

_get_control_signal_in()
Produces the INSPIRATORY control-signal that has been calculated in __calculate_control_signal_in(dt)

Returns the numerical control signal for the inspiratory prop valve

Return type float

_get_control_signal_out()
Produces the EXPIRATORY control-signal for the different states, i.e. open/close

Returns numerical control signal for expiratory side: open (1) close (0)

Return type float

_control_reset()
Resets the internal controller cycle to zero, i.e. restarts the breath cycle. Used for autonomous breath
detection.

__test_for_alarms()

Implements tests that are to be executed in the main control loop:
• Test for HAPA

• Test for Technical Alert, making sure sensor values are plausible

• Test for Technical Alert, make sure continuous in contact

Currently: Alarms are time.time() of first occurance.

__start_new_breathcycle()

Some housekeeping. This has to be executed when the next breath cycles starts:

1.1. PVP Modules 113

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

• starts new breathcycle

• initializes newe __cycle_waveform

• analyzes last breath waveform for PIP, PEEP etc. with __analyze_last_waveform()

• flushes the logfile

_PID_update(dt)
This instantiates the PID control algorithms. During the breathing cycle, it goes through the four states:

1) Rise to PIP, speed is controlled by flow (variable: __SET_PIP_GAIN)

2) Sustain PIP pressure

3) Quick fall to PEEP

4) Sustaint PEEP pressure

Once the cycle is complete, it checks the cycle for any alarms, and starts a new one. A record of pres-
sure/volume waveforms is kept and saved

Parameters dt (float) – timesstep since last update

__save_values()
Helper function to reorganize key parameters in the main PID control loop, into a SensorValues object, that
can be stored in the logfile, using a method from the DataLogger.

get_past_waveforms()
Public method to return a list of past waveforms from __cycle_waveform_archive. Note: After calling this
function, archive is emptied! The format is

• Returns a list of [Nx3] waveforms, of [time, pressure, volume]

• Most recent entry is waveform_list[-1]

Returns [Nx3] waveforms, of [time, pressure, volume]

Return type list

_start_mainloop()
Prototype method to start main PID loop. Will depend on simulation or device, specified below.

start()
Method to start _start_mainloop as a thread.

stop()
Method to stop the main loop thread, and close the logfile.

is_running()
Public Method to assess whether the main loop thread is running.

Returns Return true if and only if the main thread of controller is running.

Return type bool

get_heartbeat()
Returns an independent heart-beat of the controller, i.e. the internal loop counter incremented in
_start_mainloop.

Returns exact value of self._loop_counter

Return type int

114 Chapter 1. Software

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PVP, Release 0.2.0

class pvp.controller.control_module.ControlModuleDevice(save_logs=True, flush_every=10,
config_file=None)

Bases: pvp.controller.control_module.ControlModuleBase

Uses ControlModuleBase to control the hardware.

Initializes the ControlModule for the physical system. Inherits methods from ControlModuleBase

Parameters
• save_logs (bool, optional) – Should logs be kept? Defaults to True.

• flush_every (int, optional) – How often are log-files to be flushed, in units of main-
loop-itertions? Defaults to 10.

• config_file (str, optional) – Path to device config file, e.g. ‘pvp/io/config/dinky-
devices.ini’. Defaults to None.

Methods:

__init__([save_logs, flush_every, config_file]) Initializes the ControlModule for the physical system.
_sensor_to_COPY() Copies the current measurements

to`COPY_sensor_values`, so that it can be queried
from the outside.

_set_HAL(valve_open_in, valve_open_out) Set Controls with HAL, decorated with a timeout.
_get_HAL() Get sensor values from HAL, decorated with timeout.
set_valves_standby() This returns valves back to normal setting (in: closed,

out: open)
_start_mainloop() This is the main loop.

__init__(save_logs=True, flush_every=10, config_file=None)
Initializes the ControlModule for the physical system. Inherits methods from ControlModuleBase

Parameters
• save_logs (bool, optional) – Should logs be kept? Defaults to True.

• flush_every (int, optional) – How often are log-files to be flushed, in units of main-
loop-itertions? Defaults to 10.

• config_file (str, optional) – Path to device config file, e.g. ‘pvp/io/config/dinky-
devices.ini’. Defaults to None.

__get_hal(**kwargs)

_sensor_to_COPY()
Copies the current measurements to`COPY_sensor_values`, so that it can be queried from the outside.

_set_HAL(valve_open_in, valve_open_out)
Set Controls with HAL, decorated with a timeout.

As hardware communication is the speed bottleneck. this code is slightly optimized in so far as only changes
are sent to hardware.

Parameters
• valve_open_in (float) – setting of the inspiratory valve; should be in range [0,100]

• valve_open_out (float) – setting of the expiratory valve; should be 1/0 (open and close)

_get_HAL()
Get sensor values from HAL, decorated with timeout. As hardware communication is the speed bottleneck.
this code is slightly optimized in so far as some sensors are queried only in certain phases of the breatch

1.1. PVP Modules 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

cycle. This is done to run the primary PID loop as fast as possible:

• pressure is always queried

• Flow is queried only outside of inspiration

• In addition, oxygen is only read every 5 seconds.

set_valves_standby()
This returns valves back to normal setting (in: closed, out: open)

_start_mainloop()
This is the main loop. This method should be run as a thread (see the start() method in ControlModuleBase)

class pvp.controller.control_module.Balloon_Simulator(peep_valve)
Bases: object

Physics simulator for inflating a balloon with an attached PEEP valve. For math, see https://en.wikipedia.org/
wiki/Two-balloon_experiment

Methods:

get_pressure()

set_flow_in(Qin, dt)

set_flow_out(Qout, dt)

update(dt)

OUupdate(variable, dt, mu, sigma, tau) This is a simple function to produce an OU process
on variable.

_reset() Resets Balloon to default settings.

get_pressure()

set_flow_in(Qin, dt)

set_flow_out(Qout, dt)

update(dt)

OUupdate(variable, dt, mu, sigma, tau)
This is a simple function to produce an OU process on variable. It is used as model for fluctuations in
measurement variables.

Parameters
• variable (float) – value of a variable at previous time step

• dt (float) – timestep

• mu (float)) – mean

• sigma (float) – noise amplitude

• tau (float) – time scale

Returns value of “variable” at next time step

Return type float

_reset()
Resets Balloon to default settings.

116 Chapter 1. Software

https://docs.python.org/3/library/functions.html#object
https://en.wikipedia.org/wiki/Two-balloon_experiment
https://en.wikipedia.org/wiki/Two-balloon_experiment
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

class pvp.controller.control_module.ControlModuleSimulator(save_logs: bool = False,
simulator_dt=None,
peep_valve_setting=5)

Bases: pvp.controller.control_module.ControlModuleBase

Controlling Simulation.

Initializes the ControlModuleBase with the simple simulation (for testing/dev).

Parameters
• save_logs (bool, optional) – should logs be saved? (Useful for testing)

• simulator_dt (float, optional) – timestep between updates. Defaults to None.

• peep_valve_setting (int, optional) – Simulates action of a PEEP valve. Pressure
cannot fall below. Defaults to 5.

Methods:

__init__([save_logs, simulator_dt, ...]) Initializes the ControlModuleBase with the simple
simulation (for testing/dev).

_sensor_to_COPY() Make the sensor value object from current (simu-
lated) measurements

_start_mainloop() This is the main loop.

__init__(save_logs: bool = False, simulator_dt=None, peep_valve_setting=5)
Initializes the ControlModuleBase with the simple simulation (for testing/dev).

Parameters
• save_logs (bool, optional) – should logs be saved? (Useful for testing)

• simulator_dt (float, optional) – timestep between updates. Defaults to None.

• peep_valve_setting (int, optional) – Simulates action of a PEEP valve. Pressure
cannot fall below. Defaults to 5.

__SimulatedPropValve(x)
This simulates the action of a proportional valve. Flow-current-curve eye-balled from generic prop vale
with logistic activation.

Parameters x (float) – A control variable [like pulse-width-duty cycle or mA]

Returns flow through the valve

Return type float

__SimulatedSolenoid(x)
This simulates the action of a two-state Solenoid valve.

Parameters x (float) – If x==0: valve closed; x>0: flow set to “1”

Returns current flow

Return type float

_sensor_to_COPY()
Make the sensor value object from current (simulated) measurements

_start_mainloop()
This is the main loop. This method should be run as a thread (see the start() method in ControlModuleBase)

1.1. PVP Modules 117

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

pvp.controller.control_module.get_control_module(sim_mode=False, simulator_dt=None)
Generates control module.

Parameters
• sim_mode (bool, optional) – if true: returns simulation, else returns hardware. De-

faults to False.

• simulator_dt (float, optional) – a timescale for thee simulation. Defaults to None.

Returns Either configured for simulation, or physical device.

Return type ControlModule-Object

1.1.15 common module

1.1.15.1 Values

Parameterization of variables and values used in PVP.

Value objects define the existence and behavior of values, including creating Display and Plot widgets in the GUI,
and the contents of SensorValues and ControlSetting s used between the GUI and controller.

Classes:

ValueName(value) Canonical names of all values used in PVP.
Value(name, units, abs_range, safe_range, ...) Class to parameterize how a value is used in PVP.

Data:

VALUES Declaration of all values used by PVP
SENSOR Sensor values
CONTROL Values to control but not monitor.
DISPLAY_MONITOR Those sensor values that should also have a widget cre-

ated in the GUI
DISPLAY_CONTROL Control values that should also have a widget created in

the GUI
PLOTS Values that can be plotted

class pvp.common.values.ValueName(value)
Bases: enum.Enum

Canonical names of all values used in PVP.

Attributes:

PIP

PIP_TIME

PEEP

PEEP_TIME

continues on next page

118 Chapter 1. Software

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.Enum

PVP, Release 0.2.0

Table 16 – continued from previous page
BREATHS_PER_MINUTE

INSPIRATION_TIME_SEC

IE_RATIO

FIO2

VTE

PRESSURE

FLOWOUT

PIP = 1

PIP_TIME = 2

PEEP = 3

PEEP_TIME = 4

BREATHS_PER_MINUTE = 5

INSPIRATION_TIME_SEC = 6

IE_RATIO = 7

FIO2 = 8

VTE = 9

PRESSURE = 10

FLOWOUT = 11

class pvp.common.values.Value(name: str, units: str, abs_range: tuple, safe_range: tuple, decimals: int,
control: bool, sensor: bool, display: bool, plot: bool = False, plot_limits:
Union[None, Tuple[pvp.common.values.ValueName]] = None, control_type:
Union[None, str] = None, group: Union[None, dict] = None, default: (<class
'int'>, <class 'float'>) = None)

Bases: object

Class to parameterize how a value is used in PVP.

Sets whether a value is a sensor value, a control value, whether it should be plotted, and other details for the rest
of the system to determine how to use it.

Values should only be declared in this file so that they are kept consistent with ValueName and to not leak stray
values anywhere else in the program.

Parameters
• name (str) – Human-readable name of the value

• units (str) – Human-readable description of units

• abs_range (tuple) – tuple of ints or floats setting the logical limit of the value, eg. a percent
between 0 and 100, (0, 100)

1.1. PVP Modules 119

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PVP, Release 0.2.0

• safe_range (tuple) – tuple of ints or floats setting the safe ranges of the value,

note:

this is not the same thing as the user-set alarm values,
though the user-set alarm values are initialized as ``safe_range``.

• decimals (int) – the number of decimals of precision used when displaying the value

• control (bool) – Whether or not the value is used to control ventilation

• sensor (bool) – Whether or not the value is a measured sensor value

• display (bool) – whether the value should be created as a gui.widgets.Displaywidget.

• plot (bool) – whether or not the value is plottable in the center plot window

• plot_limits (None, tuple(ValueName)) – If plottable, and the plotted value has some
alarm limits for another value, plot those limits as horizontal lines in the plot. eg. the PIP
alarm range limits should be plotted on the Pressure plot

• control_type (None, "slider", "record") – If a control sets whether the control
should use a slider or be set by recording recent sensor values.

• group (None, str) – Unused currently, but to be used to create subgroups of control &
display widgets

• default (None, int, float) – Default value, if any. (Not automatically set in the GUI.)

Methods:

__init__(name, units, abs_range, safe_range, ...)
param name Human-readable name of

the value

to_dict() Gather up all attributes and return as a dict!

Attributes:

name Human readable name of value
abs_range tuple of ints or floats setting the logical limit of the

value, eg.
safe_range tuple of ints or floats setting the safe ranges of the

value,
decimals The number of decimals of precision used when dis-

playing the value
default Default value, if any.
control Whether or not the value is used to control ventilation
sensor Whether or not the value is a measured sensor value
display Whether the value should be created as a gui.

widgets.Display widget.
control_type If a control sets whether the control should use a

slider or be set by recording recent sensor values.
group Unused currently, but to be used to create subgroups

of control & display widgets
plot whether or not the value is plottable in the center plot

window
continues on next page

120 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

Table 18 – continued from previous page
plot_limits If plottable, and the plotted value has some alarm lim-

its for another value, plot those limits as horizontal
lines in the plot.

__init__(name: str, units: str, abs_range: tuple, safe_range: tuple, decimals: int, control: bool, sensor:
bool, display: bool, plot: bool = False, plot_limits: Union[None,
Tuple[pvp.common.values.ValueName]] = None, control_type: Union[None, str] = None, group:
Union[None, dict] = None, default: (<class 'int'>, <class 'float'>) = None)

Parameters
• name (str) – Human-readable name of the value

• units (str) – Human-readable description of units

• abs_range (tuple) – tuple of ints or floats setting the logical limit of the value, eg. a
percent between 0 and 100, (0, 100)

• safe_range (tuple) – tuple of ints or floats setting the safe ranges of the value,

note:

this is not the same thing as the user-set alarm values,
though the user-set alarm values are initialized as ``safe_range``.

• decimals (int) – the number of decimals of precision used when displaying the value

• control (bool) – Whether or not the value is used to control ventilation

• sensor (bool) – Whether or not the value is a measured sensor value

• display (bool) – whether the value should be created as a gui.widgets.Display wid-
get.

• plot (bool) – whether or not the value is plottable in the center plot window

• plot_limits (None, tuple(ValueName)) – If plottable, and the plotted value has some
alarm limits for another value, plot those limits as horizontal lines in the plot. eg. the PIP
alarm range limits should be plotted on the Pressure plot

• control_type (None, "slider", "record") – If a control sets whether the control
should use a slider or be set by recording recent sensor values.

• group (None, str) – Unused currently, but to be used to create subgroups of control &
display widgets

• default (None, int, float) – Default value, if any. (Not automatically set in the GUI.)

property name: str
Human readable name of value

Returns str

property abs_range: tuple
tuple of ints or floats setting the logical limit of the value, eg. a percent between 0 and 100, (0, 100)

Returns tuple

property safe_range: tuple
tuple of ints or floats setting the safe ranges of the value,

note:

1.1. PVP Modules 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

PVP, Release 0.2.0

this is not the same thing as the user-set alarm values,
though the user-set alarm values are initialized as ``safe_range``.

Returns tuple

property decimals: int
The number of decimals of precision used when displaying the value

Returns int

property default
Default value, if any. (Not automatically set in the GUI.)

property control: bool
Whether or not the value is used to control ventilation

Returns bool

property sensor: bool
Whether or not the value is a measured sensor value

Returns bool

property display
Whether the value should be created as a gui.widgets.Display widget.

Returns bool

property control_type
If a control sets whether the control should use a slider or be set by recording recent sensor values.

Returns None, “slider”, “record”

property group
Unused currently, but to be used to create subgroups of control & display widgets

Returns None, str

property plot
whether or not the value is plottable in the center plot window

Returns bool

property plot_limits
If plottable, and the plotted value has some alarm limits for another value, plot those limits as horizontal
lines in the plot. eg. the PIP alarm range limits should be plotted on the Pressure plot

Returns None, typing.Tuple[ValueName]

to_dict()→ dict
Gather up all attributes and return as a dict!

Returns dict

122 Chapter 1. Software

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PVP, Release 0.2.0

pvp.common.values.VALUES = OrderedDict([(<ValueName.PIP: 1>, <pvp.common.values.Value
object>), (<ValueName.PEEP: 3>, <pvp.common.values.Value object>),
(<ValueName.BREATHS_PER_MINUTE: 5>, <pvp.common.values.Value object>),
(<ValueName.INSPIRATION_TIME_SEC: 6>, <pvp.common.values.Value object>),
(<ValueName.IE_RATIO: 7>, <pvp.common.values.Value object>), (<ValueName.PIP_TIME: 2>,
<pvp.common.values.Value object>), (<ValueName.PEEP_TIME: 4>, <pvp.common.values.Value
object>), (<ValueName.PRESSURE: 10>, <pvp.common.values.Value object>), (<ValueName.VTE:
9>, <pvp.common.values.Value object>), (<ValueName.FLOWOUT: 11>, <pvp.common.values.Value
object>), (<ValueName.FIO2: 8>, <pvp.common.values.Value object>)])

Declaration of all values used by PVP

pvp.common.values.SENSOR = OrderedDict([(<ValueName.PIP: 1>, <pvp.common.values.Value
object>), (<ValueName.PEEP: 3>, <pvp.common.values.Value object>),
(<ValueName.BREATHS_PER_MINUTE: 5>, <pvp.common.values.Value object>),
(<ValueName.INSPIRATION_TIME_SEC: 6>, <pvp.common.values.Value object>),
(<ValueName.PRESSURE: 10>, <pvp.common.values.Value object>), (<ValueName.VTE: 9>,
<pvp.common.values.Value object>), (<ValueName.FLOWOUT: 11>, <pvp.common.values.Value
object>), (<ValueName.FIO2: 8>, <pvp.common.values.Value object>)])

Sensor values

Automatically generated as all Value objects in VALUES where sensor == True

pvp.common.values.CONTROL = OrderedDict([(<ValueName.PIP: 1>, <pvp.common.values.Value
object>), (<ValueName.PEEP: 3>, <pvp.common.values.Value object>),
(<ValueName.BREATHS_PER_MINUTE: 5>, <pvp.common.values.Value object>),
(<ValueName.INSPIRATION_TIME_SEC: 6>, <pvp.common.values.Value object>),
(<ValueName.IE_RATIO: 7>, <pvp.common.values.Value object>), (<ValueName.PIP_TIME: 2>,
<pvp.common.values.Value object>), (<ValueName.PEEP_TIME: 4>, <pvp.common.values.Value
object>)])

Values to control but not monitor.

Automatically generated as all Value objects in VALUES where control == True

pvp.common.values.DISPLAY_MONITOR = OrderedDict([(<ValueName.PIP: 1>,
<pvp.common.values.Value object>), (<ValueName.PEEP: 3>, <pvp.common.values.Value
object>), (<ValueName.BREATHS_PER_MINUTE: 5>, <pvp.common.values.Value object>),
(<ValueName.INSPIRATION_TIME_SEC: 6>, <pvp.common.values.Value object>),
(<ValueName.PRESSURE: 10>, <pvp.common.values.Value object>), (<ValueName.VTE: 9>,
<pvp.common.values.Value object>), (<ValueName.FLOWOUT: 11>, <pvp.common.values.Value
object>), (<ValueName.FIO2: 8>, <pvp.common.values.Value object>)])

Those sensor values that should also have a widget created in the GUI

Automatically generated as all Value objects in VALUES where sensor == True and display == True

pvp.common.values.DISPLAY_CONTROL = OrderedDict([(<ValueName.PIP: 1>,
<pvp.common.values.Value object>), (<ValueName.PEEP: 3>, <pvp.common.values.Value
object>), (<ValueName.BREATHS_PER_MINUTE: 5>, <pvp.common.values.Value object>),
(<ValueName.INSPIRATION_TIME_SEC: 6>, <pvp.common.values.Value object>),
(<ValueName.IE_RATIO: 7>, <pvp.common.values.Value object>), (<ValueName.PIP_TIME: 2>,
<pvp.common.values.Value object>)])

Control values that should also have a widget created in the GUI

Automatically generated as all Value objects in VALUES where control == True and display == True

pvp.common.values.PLOTS = OrderedDict([(<ValueName.PRESSURE: 10>,
<pvp.common.values.Value object>), (<ValueName.FLOWOUT: 11>, <pvp.common.values.Value
object>), (<ValueName.FIO2: 8>, <pvp.common.values.Value object>)])

Values that can be plotted

1.1. PVP Modules 123

PVP, Release 0.2.0

Automatically generated as all Value objects in VALUES where plot == True

1.1.15.2 Message

Message objects that define the API between modules in the system.

• SensorValues are used to communicate sensor readings between the controller, GUI, and alarm manager

• ControlSetting is used to set ventilation controls from the GUI to the controller.

Classes:

SensorValues([timestamp, loop_counter, ...]) Structured class for communicating sensor readings
throughout PVP.

ControlSetting(name[, value, min_value, ...]) Message containing ventilation control parameters.
ControlValues(control_signal_in, ...) Class to save control values, analogous to SensorValues.
DerivedValues(timestamp, breath_count, ...) Class to save derived values, analogous to SensorValues.

class pvp.common.message.SensorValues(timestamp=None, loop_counter=None, breath_count=None,
vals=typing.Optional[typing.Dict[ForwardRef('ValueName'),
float]], **kwargs)

Bases: object

Structured class for communicating sensor readings throughout PVP.

Should be instantiated with each of the SensorValues.additional_values, and values for all ValueName s
in values.SENSOR by passing them in the vals kwarg.

An AssertionError if an incomplete set of values is given.

Values can be accessed either via attribute name (SensorValues.PIP) or like a dictionary
(SensorValues['PIP'])

Parameters
• timestamp (float) – from time.time(). must be passed explicitly or as an entry in vals

• loop_counter (int) – number of control_module loops. must be passed explicitly or as an
entry in vals

• breath_count (int) – number of breaths taken. must be passed explicitly or as an entry in
vals

• vals (None, dict) – Dict of {ValueName: float} that contains current sensor read-
ings. Can also be equivalently given as kwargs . if None, assumed values are being passed
as kwargs, but an exception will be raised if they aren’t.

• **kwargs – sensor readings, must be in pvp.values.SENSOR.keys

Attributes:

additional_values Additional attributes that are not ValueName s that
are expected in each SensorValues message

Methods:

124 Chapter 1. Software

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

PVP, Release 0.2.0

__init__([timestamp, loop_counter, ...])
param timestamp from time.time().

must be passed explicitly or as an
entry in vals

to_dict() Return a dictionary of all sensor values and additional
values

additional_values = ('timestamp', 'loop_counter', 'breath_count')
Additional attributes that are not ValueName s that are expected in each SensorValues message

__init__(timestamp=None, loop_counter=None, breath_count=None,
vals=typing.Optional[typing.Dict[ForwardRef('ValueName'), float]], **kwargs)

Parameters
• timestamp (float) – from time.time(). must be passed explicitly or as an entry in vals

• loop_counter (int) – number of control_module loops. must be passed explicitly or as
an entry in vals

• breath_count (int) – number of breaths taken. must be passed explicitly or as an entry
in vals

• vals (None, dict) – Dict of {ValueName: float} that contains current sensor read-
ings. Can also be equivalently given as kwargs . if None, assumed values are being passed
as kwargs, but an exception will be raised if they aren’t.

• **kwargs – sensor readings, must be in pvp.values.SENSOR.keys

to_dict()→ dict
Return a dictionary of all sensor values and additional values

Returns dict

class pvp.common.message.ControlSetting(name: pvp.common.values.ValueName, value: float = None,
min_value: float = None, max_value: float = None, timestamp:
float = None, range_severity: AlarmSeverity = None)

Bases: object

Message containing ventilation control parameters.

At least one of value, min_value, or max_value must be given (unlike SensorValues which requires all
fields to be present) – eg. in the case where one is setting alarm thresholds without changing the actual set value

When a parameter has multiple alarm limits for different alarm severities, the severity should be passed to
range_severity

Parameters
• name (ValueName) – Name of value being set

• value (float) – Value to set control

• min_value (float) – Value to set control minimum (typically used for alarm thresholds)

• max_value (float) – Value to set control maximum (typically used for alarm thresholds)

• timestamp (float) – time.time() control message was generated

• range_severity (AlarmSeverity) – Some control settings have multiple limits for dif-
ferent alarm severities, this attr, when present, specifies which is being set.

1.1. PVP Modules 125

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

Methods:

__init__(name[, value, min_value, ...]) Message containing ventilation control parameters.

__init__(name: pvp.common.values.ValueName, value: float = None, min_value: float = None, max_value:
float = None, timestamp: float = None, range_severity: AlarmSeverity = None)

Message containing ventilation control parameters.

At least one of value, min_value, or max_value must be given (unlike SensorValues which requires
all fields to be present) – eg. in the case where one is setting alarm thresholds without changing the actual
set value

When a parameter has multiple alarm limits for different alarm severities, the severity should be passed to
range_severity

Parameters
• name (ValueName) – Name of value being set

• value (float) – Value to set control

• min_value (float) – Value to set control minimum (typically used for alarm thresholds)

• max_value (float) – Value to set control maximum (typically used for alarm thresholds)

• timestamp (float) – time.time() control message was generated

• range_severity (AlarmSeverity) – Some control settings have multiple limits for dif-
ferent alarm severities, this attr, when present, specifies which is being set.

class pvp.common.message.ControlValues(control_signal_in, control_signal_out)
Bases: object

Class to save control values, analogous to SensorValues.

Used by the controller to save waveform data in DataLogger.store_waveform_data() and
ControlModuleBase.__save_values`()

Key difference: SensorValues come exclusively from the sensors, ControlValues contains controller variables,
i.e. control signals and controlled signals (the flows). :param control_signal_in: :param control_signal_out:

class pvp.common.message.DerivedValues(timestamp, breath_count, I_phase_duration, pip_time, peep_time,
pip, pip_plateau, peep, vte)

Bases: object

Class to save derived values, analogous to SensorValues.

Used by controller to store derived values (like PIP from Pressure) in DataLogger.store_derived_data()
and in ControlModuleBase.__analyze_last_waveform`()

Key difference: SensorValues come exclusively from the sensors, DerivedValues contain estimates of
I_PHASE_DURATION, PIP_TIME, PEEP_time, PIP, PIP_PLATEAU, PEEP, and VTE. :param timestamp:
:param breath_count: :param I_phase_duration: :param pip_time: :param peep_time: :param pip: :param
pip_plateau: :param peep: :param vte:

126 Chapter 1. Software

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

PVP, Release 0.2.0

1.1.15.3 Loggers

Logging functionality

There are two types of loggers:

• loggers.init_logger() creates a standard logging.Logger -based logging system for debugging and
recording system events, and a

• loggers.DataLogger - a tables - based class to store continuously measured sensor values.

Data:

_LOGGERS list of strings, which loggers have been created already.

Functions:

init_logger(module_name[, log_level, ...]) Initialize a logger for logging events.
update_logger_sizes() Adjust each logger's maxBytes attribute so that the total

across all loggers is prefs.LOGGING_MAX_BYTES

Classes:

DataLogger([compression_level]) Class for logging numerical respiration data and control
settings. Creates a hdf5 file with this general structure:
/ root |--- waveforms (group) | |--- time | pressure_data
| flow_out | control_signal_in | control_signal_out |
FiO2 | Cycle No. | |--- controls (group) | |--- (time,
controllsignal) | |--- derived_quantities (group) | |---
(time, Cycle No, I_PHASE_DURATION, PIP_TIME,
PEEP_time, PIP, PIP_PLATEAU, PEEP, VTE) | |---
program_information (group) | |--- (version & githash).

pvp.common.loggers._LOGGERS = ['pvp.common.prefs', 'pvp.alarm.alarm_manager']
list of strings, which loggers have been created already.

pvp.common.loggers.init_logger(module_name: str, log_level: Optional[int] = None, file_handler: bool =
True)→ logging.Logger

Initialize a logger for logging events.

To keep logs sensible, you should usually initialize the logger with the name of the module that’s using it, eg:

logger = init_logger(__name__)

If a logger has already been initialized (ie. its name is in loggers._LOGGERS, return that.

otherwise configure and return the logger such that

• its LOGLEVEL is set to prefs.LOGLEVEL

• It formats logging messages with logger name, time, and logging level

• if a file handler is specified (default), create a logging.RotatingFileHandler according to params set
in prefs

Parameters
• module_name (str) – module name used to generate filename and name logger

1.1. PVP Modules 127

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

• log_level (int) – one of :var:`logging.DEBUG`, :var:`logging.INFO`,
:var:`logging.WARNING`, or :var:`logging.ERROR`

• file_handler (bool, str) – if True, (default), log in <logdir>/module_name.log .
if False, don’t log to disk.

Returns Logger 4 u 2 use

Return type logging.Logger

pvp.common.loggers.update_logger_sizes()
Adjust each logger’s maxBytes attribute so that the total across all loggers is prefs.LOGGING_MAX_BYTES

class pvp.common.loggers.DataLogger(compression_level: int = 9)
Bases: object

Class for logging numerical respiration data and control settings. Creates a hdf5 file with this general structure:

/ root |— waveforms (group) | |— time | pressure_data | flow_out | control_signal_in | con-
trol_signal_out | FiO2 | Cycle No. | |— controls (group) | |— (time, controllsignal) | |— de-
rived_quantities (group) | |— (time, Cycle No, I_PHASE_DURATION, PIP_TIME, PEEP_time, PIP,
PIP_PLATEAU, PEEP, VTE) | |— program_information (group) | |— (version & githash)

Public Methods: close_logfile(): Flushes, and closes the logfile. store_waveform_data(SensorValues): Takes
data from SensorValues, but DOES NOT FLUSH store_controls(): Store controls in the same file? TODO:
Discuss flush_logfile(): Flush the data into the file

Initialized the coontinuous numerical logger class.

Parameters compression_level (int, optional) – Compression level of the hdf5 file. Defaults
to 9.

Methods:

__init__([compression_level]) Initialized the coontinuous numerical logger class.
_open_logfile() Opens the hdf5 file and generates the file structure.
close_logfile() Flushes & closes the open hdf file.
store_program_data() Appends program metadata to the logfile: githash

and version
store_waveform_data(sensor_values, ...) Appends a datapoint to the file for continuous logging

of streaming data.
store_control_command(control_setting) Appends a datapoint to the event-table, derived from

ControlSettings
store_derived_data(derived_values) Appends a datapoint to the event-table, derived the

continuous data (PIP, PEEP etc.)
flush_logfile() This flushes the datapoints to the file.
check_files() make sure that the file's are not getting too large.
rotation_newfile() This rotates through filenames, similar to a ring-

buffer, to make sure that the program does not run
of of space/

load_file([filename]) This loads a hdf5 file, and returns data to the user
as a dictionary with two keys: waveform_data and
control_data

continues on next page

128 Chapter 1. Software

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

PVP, Release 0.2.0

Table 26 – continued from previous page
log2mat([filename]) Translates the compressed hdf5 into a matlab file con-

taining a matlab struct. This struct has the same struc-
ture as the hdf5 file, but is not compressed. Use for
any file: dl = DataLogger() dl.log2mat(filename) The
file is saved at the same path as .mat file, where the
content is represented as matlab-structs.

log2csv([filename]) Translates the compressed hdf5 into three csv files
containing:

__init__(compression_level: int = 9)
Initialized the coontinuous numerical logger class.

Parameters compression_level (int, optional) – Compression level of the hdf5 file. De-
faults to 9.

_open_logfile()
Opens the hdf5 file and generates the file structure.

close_logfile()
Flushes & closes the open hdf file.

store_program_data()
Appends program metadata to the logfile: githash and version

store_waveform_data(sensor_values: SensorValues, control_values: ControlValues)
Appends a datapoint to the file for continuous logging of streaming data. NOTE: Not flushed yet.

Parameters
• sensor_values (SensorValues) – SensorValues to be stored in the file.

• control_values (ControlValues) – ControlValues to be stored in the file

store_control_command(control_setting: ControlSetting)
Appends a datapoint to the event-table, derived from ControlSettings

Parameters control_setting (ControlSetting) – ControlSettings object, the content of
which should be stored

store_derived_data(derived_values: DerivedValues)
Appends a datapoint to the event-table, derived the continuous data (PIP, PEEP etc.)

Parameters derived_values (DerivedValues) – DerivedValues object, the content of which
should be stored

flush_logfile()
This flushes the datapoints to the file. To be executed every other second, e.g. at the end of breath cycle.

check_files()
make sure that the file’s are not getting too large.

rotation_newfile()
This rotates through filenames, similar to a ringbuffer, to make sure that the program does not run of of
space/

load_file(filename=None)
This loads a hdf5 file, and returns data to the user as a dictionary with two keys: waveform_data and
control_data

Parameters filename (str, optional) – Path to a hdf5-file. If none is given, uses currently
open file. Defaults to None.

1.1. PVP Modules 129

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

Returns Containing the data arranged as ` {“waveform_data”: waveform_data, “control_data”:
control_data, “derived_data”: derived_data, “program_information”: program_data}`

Return type dictionary

log2mat(filename=None)
Translates the compressed hdf5 into a matlab file containing a matlab struct. This struct has the same
structure as the hdf5 file, but is not compressed. Use for any file:

dl = DataLogger() dl.log2mat(filename)

The file is saved at the same path as .mat file, where the content is represented as matlab-structs.

Parameters filename (str, optional) – Path to a hdf5-file. If none is given, uses currently
open file. Defaults to None.

log2csv(filename=None)

Translates the compressed hdf5 into three csv files containing:
• waveform_data (measurement once per cycle)

• derived_quantities (PEEP, PIP etc.)

• control_commands (control commands sent to the controller)

This approximates the structure contained in the hdf5 file. Use for any file:

dl = DataLogger() dl.log2csv(filename)

Parameters filename (str, optional) – Path to a hdf5-file. If none is given, uses currently
open file. Defaults to None.

1.1.15.4 Prefs

Prefs set configurable parameters used throughout PVP.

See prefs._DEFAULTS for description of all available parameters

Prefs are stored in a .json file, by default located at ~/pvp/prefs.json . Prefs can be manually changed by editing
this file (when the system is not running, when the system is running use prefs.set_pref()).

When any module in pvp is first imported, the prefs.init() function is called that

• Makes any directories listed in prefs._DIRECTORIES

• Declares all prefs as their default values from prefs._DEFAULTS to ensure they are always defined

• Loads the existing prefs.json file and updates values from their defaults

Prefs can be gotten and set from anywhere in the system with prefs.get_pref() and prefs.set_pref() . Prefs
are stored in a multiprocessing.Manager dictionary which makes these methods both thread- and process-safe.
Whenever a pref is set, the prefs.json file is updated to reflect the new value, so preferences are durable between
runtimes.

Additional prefs should be added by adding an entry in the prefs._DEFAULTS dict rather than hardcoding them
elsewhere in the program.

Data:

_DIRECTORIES Directories to ensure are created and added to prefs.
continues on next page

130 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

Table 27 – continued from previous page
_DEFAULTS Declare all available parameters and set default values.

Functions:

set_pref (key, val) Sets a pref in the manager and, if prefs.LOADED is
True, calls prefs.save_prefs()

get_pref ([key]) Get global configuration value
load_prefs(prefs_fn) Load prefs from a .json prefs file, combining (and over-

writing) any existing prefs, and then saves.
save_prefs([prefs_fn]) Dumps loaded prefs to PREFS_FN.
make_dirs() ensures _DIRECTORIES are created and added to prefs.
init() Initialize prefs.

pvp.common.prefs._PREF_MANAGER = <multiprocessing.managers.SyncManager object>
The multiprocessing.Manager that stores prefs during system operation

pvp.common.prefs._PREFS = <DictProxy object, typeid 'dict'>
The dict created by prefs._PREF_MANAGER to store prefs.

pvp.common.prefs._LOGGER: logging.Logger = <Logger pvp.common.prefs (WARNING)>
A logging.Logger to log pref init and setting events

pvp.common.prefs._LOCK = <Lock(owner=None)>
Locks access to prefs_fn

Type mp.Lock
pvp.common.prefs._DIRECTORIES = {'DATA_DIR': '/home/docs/pvp/logs', 'LOG_DIR':
'/home/docs/pvp/logs', 'VENT_DIR': '/home/docs/pvp'}

Directories to ensure are created and added to prefs.

• VENT_DIR: ~/pvp - base directory for user storage

• LOG_DIR: ~/pvp/logs - for storage of event and alarm logs

• DATA_DIR: ~/pvp/data - for storage of waveform data

pvp.common.prefs.LOADED = <Synchronized wrapper for c_bool(True)>
flag to indicate whether prefs have been loaded (and thus set_pref() should write to disk).

uses a multiprocessing.Value to be thread and process safe.

Type bool

pvp.common.prefs._DEFAULTS = {'BREATH_DETECTION': True, 'BREATH_PRESSURE_DROP': 4,
'CONTROLLER_LOOPS_UNTIL_UPDATE': 1, 'CONTROLLER_LOOP_UPDATE_TIME': 0.0,
'CONTROLLER_LOOP_UPDATE_TIME_SIMULATOR': 0.005, 'CONTROLLER_MAX_FLOW': 10,
'CONTROLLER_MAX_PRESSURE': 100, 'CONTROLLER_MAX_STUCK_SENSOR': 5,
'CONTROLLER_RINGBUFFER_SIZE': 100, 'COUGH_DURATION': 0.1, 'ENABLE_DIALOGS': True,
'ENABLE_WARNINGS': True, 'GUI_STATE_FN': 'gui_state.json', 'GUI_UPDATE_TIME': 0.05,
'HEARTBEAT_TIMEOUT': 0.02, 'LOGGING_MAX_BYTES': 2147483648, 'LOGGING_MAX_FILES': 5,
'LOGLEVEL': 'WARNING', 'OXYGEN_READ_FREQUENCY': 2, 'PREFS_FN': None, 'TIMEOUT': 0.05,
'TIME_FIRST_START': None}

Declare all available parameters and set default values. If no default, set as None.

• PREFS_FN - absolute path to the prefs file

• TIME_FIRST_START - time when the program has been started for the first time

1.1. PVP Modules 131

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#bool

PVP, Release 0.2.0

• VENT_DIR: ~/pvp - base directory for user storage

• LOG_DIR: ~/pvp/logs - for storage of event and alarm logs

• DATA_DIR: ~/pvp/data - for storage of waveform data

• LOGGING_MAX_BYTES : the total storage space for all loggers – each logger gets LOGGING_MAX_BYTES/
len(loggers) space (2GB by default)

• LOGGING_MAX_FILES : number of files to split each logger’s logs across (default: 5)

• LOGLEVEL: One of ('DEBUG', 'INFO', 'WARNING', 'EXCEPTION') that sets the minimum log level
that is printed and written to disk

• TIMEOUT: timeout used for timeout decorators on time-sensitive operations (in seconds, default 0.05)

• HEARTBEAT_TIMEOUT: Time between heartbeats between GUI and controller after which contact is as-
sumed to be lost (in seconds, default 0.02)

• GUI_STATE_FN: Filename of gui control state file, relative to VENT_DIR (default: gui_state.json)

• GUI_UPDATE_TIME: Time between calls of PVP_Gui.update_gui() (in seconds, default: 0.05)

• ENABLE_DIALOGS: Enable all GUI dialogs – set as False when testing on virtual frame buffer that doesn’t
support them (default: True and should stay that way)

• ENABLE_WARNINGS: Enable user warnings and value change confirmations (default: True)

• CONTROLLER_MAX_FLOW: Maximum flow, above which the controller considers a sensor error (default: 10)

• CONTROLLER_MAX_PRESSURE: Maximum pressure, above which the controller considers a sensor error
(default: 100)

• CONTROLLER_MAX_STUCK_SENSOR: Max amount of time (in s) before considering a sensor stuck (default:
0.2)

• CONTROLLER_LOOP_UPDATE_TIME: Amount of time to sleep in between controller update times when us-
ing ControlModuleDevice (default: 0.0)

• CONTROLLER_LOOP_UPDATE_TIME_SIMULATOR: Amount of time to sleep in between controller updates
when using ControlModuleSimulator (default: 0.005)

• CONTROLLER_LOOPS_UNTIL_UPDATE: Number of controller loops in between updating its externally-
available COPY attributes retrieved by ControlModuleBase.get_sensor() et al

• CONTROLLER_RINGBUFFER_SIZE: Maximum number of breath cycle records to be kept in memory (de-
fault: 100)

• COUGH_DURATION: Amount of time the high-pressure alarm limit can be exceeded and considered a cough
(in seconds, default: 0.1)

• BREATH_PRESSURE_DROP: Amount pressure can drop below set PEEP before being considered an au-
tonomous breath when in breath detection mode

• BREATH_DETECTION: Whether the controller should detect autonomous breaths in order to reset ventilation
cycles (default: True)

pvp.common.prefs.set_pref(key: str, val)
Sets a pref in the manager and, if prefs.LOADED is True, calls prefs.save_prefs()

Parameters
• key (str) – Name of pref key

• val – Value to set

132 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

pvp.common.prefs.get_pref(key: Optional[str] = None)
Get global configuration value

Parameters key (str, None) – get configuration value with specific key . if None , return all config
values.

pvp.common.prefs.load_prefs(prefs_fn: str)
Load prefs from a .json prefs file, combining (and overwriting) any existing prefs, and then saves.

Called on pvp import by prefs.init()

Also initializes prefs._LOGGER

Note: once this function is called, set_pref()will update the prefs file on disk. So if load_prefs() is called
again at any point it should not change prefs.

Parameters prefs_fn (str) – path of prefs.json

pvp.common.prefs.save_prefs(prefs_fn: Optional[str] = None)
Dumps loaded prefs to PREFS_FN.

Parameters prefs_fn (str) – Location to dump prefs. if None, use existing PREFS_FN

pvp.common.prefs.make_dirs()
ensures _DIRECTORIES are created and added to prefs.

pvp.common.prefs.init()
Initialize prefs. Called in pvp.__init__.py to ensure prefs are initialized before anything else.

1.1.15.5 Unit Conversion

Functions that convert between units

Each function should accept a single float as an argument and return a single float

Used by the GUI to display values in different units. Widgets use these as

• _convert_in functions to convert units from the base unit to the displayed unit and

• _convert_out functions to convert units from the displayed unit to the base unit.

Note: Unit conversions are cosmetic – values are always kept as the base unit internally (ie. cmH2O for pressure) and
all that is changed is the displayed value in the GUI.

Functions:

cmH2O_to_hPa(pressure) Convert cmH2O to hPa
hPa_to_cmH2O(pressure) Convert hPa to cmH2O
rounded_string(value[, decimals]) Create a rounded string of a number that doesnt have

trailing .0 when decimals = 0

pvp.common.unit_conversion.cmH2O_to_hPa(pressure: float)→ float
Convert cmH2O to hPa

Parameters pressure (float) – Pressure in cmH2O

Returns Pressure in hPa (pressure / 1.0197162129779)

1.1. PVP Modules 133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

Return type float

pvp.common.unit_conversion.hPa_to_cmH2O(pressure: float)→ float
Convert hPa to cmH2O

Parameters pressure (float) – Pressure in hPa

Returns Pressure in cmH2O (pressure * 1.0197162129779)

Return type float

pvp.common.unit_conversion.rounded_string(value: float, decimals: int = 0)→ str
Create a rounded string of a number that doesnt have trailing .0 when decimals = 0

Parameters
• value (float) – Value to stringify

• decimals (int) – Number of decimal places to round to

Returns Clean rounded string version of number

Return type str

1.1.15.6 utils

Exceptions:

TimeoutException

Functions:

time_limit(seconds)

timeout(func) Defines a decorator for a 50ms timeout.
get_version() Returns PVP version, and if available githash, as a string.

exception pvp.common.utils.TimeoutException
Bases: Exception

pvp.common.utils.time_limit(seconds)

pvp.common.utils.timeout(func)
Defines a decorator for a 50ms timeout. Usage/Test:

@timeout def foo(sleeptime):

time.sleep(sleeptime)

print(“hello”)

pvp.common.utils.get_version()
Returns PVP version, and if available githash, as a string.

134 Chapter 1. Software

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

PVP, Release 0.2.0

1.1.15.7 fashion

Decorators for dangerous functions

Functions:

pigpio_command(func)

pvp.common.fashion.pigpio_command(func)

1.1.16 pvp.io package

1.1.16.1 pvp.io.hal module

Module for interacting with physical and/or simulated devices installed on the ventilator.

Classes:

Hal([config_file]) Hardware Abstraction Layer for ventilator hardware.

class pvp.io.hal.Hal(config_file='pvp/io/config/devices.ini')
Bases: object

Hardware Abstraction Layer for ventilator hardware. Defines a common API for interacting with the sensors &
actuators on the ventilator. The types of devices installed on the ventilator (real or simulated) are specified in a
configuration file.

Initializes HAL from config_file. For each section in config_file, imports the class <type> from module <mod-
ule>, and sets attribute self.<section> = <type>(**opts), where opts is a dict containing all of the options
in <section> that are not <type> or <section>. For example, upon encountering the following entry in
config_file.ini:

[adc] type = ADS1115 module = devices i2c_address = 0x48 i2c_bus = 1

The Hal will:
1) Import pvp.io.devices.ADS1115 (or ADS1015) as a local variable: class_ =

getattr(import_module(‘.devices’, ‘pvp.io’), ‘ADS1115’)

2) Instantiate an ADS1115 object with the arguments defined in config_file and set it as an attribute:
self._adc = class_(pig=self.-pig,address=0x48,i2c_bus=1)

Note: RawConfigParser.optionxform() is overloaded here s.t. options are case sensitive (they are by default
case insensitive). This is necessary due to the kwarg MUX which is so named for consistency with the
config registry documentation in the ADS1115 datasheet. For example, A P4vMini pressure_sensor on pin
A0 (MUX=0) of the ADC is passed arguments like:

analog_sensor = AnalogSensor(pig=self._pig, adc=self._adc, MUX=0, offset_voltage=0.25, out-
put_span = 4.0, conversion_factor=2.54*20

)

Note: ast.literal_eval(opt) interprets integers, 0xFF, (a, b) etc. correctly. It does not interpret strings cor-
rectly, nor does it know ‘adc’ -> self._adc; therefore, these special cases are explicitly handled.

1.1. PVP Modules 135

https://docs.python.org/3/library/functions.html#object

PVP, Release 0.2.0

Parameters config_file (str) – Path to the configuration file containing the definitions of specific
components on the ventilator machine. (e.g., config_file = “pvp/io/config/devices.ini”)

Methods:

__init__([config_file]) Initializes HAL from config_file.

Attributes:

pressure Returns the pressure from the primary pressure sen-
sor.

oxygen Returns the oxygen concentration from the primary
oxygen sensor.

aux_pressure Returns the pressure from the auxiliary pressure sen-
sor, if so equipped.

flow_in The measured flow rate inspiratory side.
flow_ex The measured flow rate expiratory side.
setpoint_in The currently requested flow for the inspiratory pro-

portional control valve as a proportion of maximum.
setpoint_ex The currently requested flow on the expiratory side

as a proportion of the maximum.

__init__(config_file='pvp/io/config/devices.ini')

Initializes HAL from config_file. For each section in config_file, imports the class <type> from module
<module>, and sets attribute self.<section> = <type>(**opts), where opts is a dict containing all of the
options in <section> that are not <type> or <section>. For example, upon encountering the following
entry in config_file.ini:

[adc] type = ADS1115 module = devices i2c_address = 0x48 i2c_bus = 1

The Hal will:
1) Import pvp.io.devices.ADS1115 (or ADS1015) as a local variable: class_ =

getattr(import_module(‘.devices’, ‘pvp.io’), ‘ADS1115’)

2) Instantiate an ADS1115 object with the arguments defined in config_file and set it as an attribute:
self._adc = class_(pig=self.-pig,address=0x48,i2c_bus=1)

Note: RawConfigParser.optionxform() is overloaded here s.t. options are case sensitive (they are by
default case insensitive). This is necessary due to the kwarg MUX which is so named for consis-
tency with the config registry documentation in the ADS1115 datasheet. For example, A P4vMini
pressure_sensor on pin A0 (MUX=0) of the ADC is passed arguments like:

analog_sensor = AnalogSensor(pig=self._pig, adc=self._adc, MUX=0, offset_voltage=0.25, out-
put_span = 4.0, conversion_factor=2.54*20

)

Note: ast.literal_eval(opt) interprets integers, 0xFF, (a, b) etc. correctly. It does not interpret strings
correctly, nor does it know ‘adc’ -> self._adc; therefore, these special cases are explicitly handled.

Parameters config_file (str) – Path to the configuration file containing the definitions of spe-
cific components on the ventilator machine. (e.g., config_file = “pvp/io/config/devices.ini”)

136 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

property pressure: float
Returns the pressure from the primary pressure sensor.

property oxygen: float
Returns the oxygen concentration from the primary oxygen sensor.

property aux_pressure: float
Returns the pressure from the auxiliary pressure sensor, if so equipped. If a secondary pressure sensor is
not defined, raises a RuntimeWarning.

property flow_in: float
The measured flow rate inspiratory side.

property flow_ex: float
The measured flow rate expiratory side.

property setpoint_in: float
The currently requested flow for the inspiratory proportional control valve as a proportion of maximum.

property setpoint_ex: float
The currently requested flow on the expiratory side as a proportion of the maximum.

1.1.16.2 devices

A module for ventilator hardware device drivers

1.1.17 Alarm

1.1.17.1 Alarm System Overview

• Alarms are represented as Alarm objects, which are created and managed by the Alarm_Manager.

• A collection of Alarm_Rule s define the Condition s for raising Alarm s of different AlarmSeverity .

• The alarm manager is continuously fed SensorValues objects during PVP_Gui.update_gui(), which it uses
to check() each alarm rule.

• The alarm manager emits Alarm objects to the PVP_Gui.handle_alarm() method.

• The alarm manager also updates alarm thresholds set as Condition.depends to PVP_Gui.limits_updated()
when control parameters are set (eg. updates the HIGH_PRESSURE alarm to be triggered 15% above some set
PIP).

1.1.17.2 Alarm Modules

Alarm Manager

The alarm manager is responsible for checking the Alarm_Rule s and maintaining the Alarm s active in the system.

Only one instance of the Alarm_Manager can be created at once, and if it is instantiated again, the existing object will
be returned.

Classes:

Alarm_Manager() The Alarm Manager

1.1. PVP Modules 137

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

class pvp.alarm.alarm_manager.Alarm_Manager
The Alarm Manager

The alarm manager receives SensorValues from the GUI via Alarm_Manager.update() and emits Alarm s
to methods given by Alarm_Manager.add_callback() . When alarm limits are updated (ie. the Alarm_Rule
has depends), it emits them to methods registered with Alarm_Manager.add_dependency_callback() .

On initialization, the alarm manager calls Alarm_Manager.load_rules() , which loads all rules defined in
alarm.ALARM_RULES .

active_alarms
{AlarmType: Alarm}

Type dict

logged_alarms
A list of deactivated alarms.

Type list

dependencies
A dictionary mapping ValueName s to the alarm threshold dependencies they update

Type dict

pending_clears
[AlarmType] list of alarms that have been requested to be cleared

Type list

callbacks
list of callables that accept Alarm s when they are raised/altered.

Type list

cleared_alarms
of AlarmType s, alarms that have been cleared but have not dropped back into the ‘off’ range to enable
re-raising

Type list

snoozed_alarms
of AlarmType s : times, alarms that should not be raised because they have been silenced for a period of
time

Type dict

callbacks
list of callables to send Alarm objects to

Type list

depends_callbacks
When we update_dependencies(), we send back a ControlSetting with the new min/max

Type list

rules
A dict mapping AlarmType to Alarm_Rule .

Type dict

If an Alarm_Manager already exists, when initing just return that one

Attributes:

138 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PVP, Release 0.2.0

_instance

active_alarms

logged_alarms

dependencies

pending_clears

cleared_alarms

snoozed_alarms

callbacks

depends_callbacks

rules

logger

Methods:

load_rules() Copy alarms from alarm.ALARM_RULES and call
Alarm_Manager.load_rule() for each

load_rule(alarm_rule) Add the Alarm Rule to Alarm_Manager.rules
and register any dependencies they have with
Alarm_Manager.register_dependency()

update(sensor_values) Call Alarm_Manager.check_rule() for all rules
in Alarm_Manager.rules

check_rule(rule, sensor_values) check() the alarm rule, handle logic of raising, emit-
ting, or lowering an alarm.

emit_alarm(alarm_type, severity) Emit alarm (by calling all callbacks with it).
deactivate_alarm(alarm) Mark an alarm's internal active flags and remove from

active_alarms
dismiss_alarm(alarm_type[, duration]) GUI or other object requests an alarm to be dismissed

& deactivated
get_alarm_severity(alarm_type) Get the severity of an Alarm
register_alarm(alarm) Be given an already created alarm and emit to call-

backs.
register_dependency(condition, dependency, ...) Add dependency in a Condition object to be updated

when values are changed
update_dependencies(control_setting) Update Condition objects that update their value ac-

cording to some control parameter
add_callback(callback) Assert we're being given a callable and add it to our

list of callbacks.
add_dependency_callback(callback) Assert we're being given a callable and add it to our

list of dependency_callbacks
continues on next page

1.1. PVP Modules 139

PVP, Release 0.2.0

Table 38 – continued from previous page
clear_all_alarms() call Alarm_Manager.deactivate_alarm() for all

active alarms.
reset() Reset all conditions, callbacks, and other stateful at-

tributes and clear alarms

_instance = None

active_alarms: Dict[pvp.alarm.AlarmType, pvp.alarm.alarm.Alarm] = {}

logged_alarms: List[pvp.alarm.alarm.Alarm] = []

dependencies = {}

pending_clears = []

cleared_alarms = []

snoozed_alarms = {}

callbacks = []

depends_callbacks = []

rules: Dict[pvp.alarm.AlarmType, pvp.alarm.rule.Alarm_Rule] = {}

logger = <Logger pvp.alarm.alarm_manager (WARNING)>

load_rules()
Copy alarms from alarm.ALARM_RULES and call Alarm_Manager.load_rule() for each

load_rule(alarm_rule: pvp.alarm.rule.Alarm_Rule)
Add the Alarm Rule to Alarm_Manager.rules and register any dependencies they have with
Alarm_Manager.register_dependency()

Parameters alarm_rule (Alarm_Rule) – Alarm rule to be loaded

update(sensor_values: pvp.common.message.SensorValues)
Call Alarm_Manager.check_rule() for all rules in Alarm_Manager.rules

Parameters sensor_values (SensorValues) – New sensor values from the GUI

check_rule(rule: pvp.alarm.rule.Alarm_Rule, sensor_values: pvp.common.message.SensorValues)
check() the alarm rule, handle logic of raising, emitting, or lowering an alarm.

When alarms are dismissed, an alarm.Alarm is emitted with AlarmSeverity.OFF .

• If the alarm severity has increased, emit a new alarm.

• If the alarm severity has decreased and the alarm is not latched, emit a new alarm

• If the alarm severity has decreased and the alarm is latched, check if the alarm has been manually
dismissed, if it has emit a new alarm.

• If a latched alarm has been manually dismissed previously and the alarm condition is now no longer
met, dismiss the alarm.

Parameters
• rule (Alarm_Rule) – Alarm rule to check

• sensor_values (SensorValues) – sent by the GUI to check against alarm rule

140 Chapter 1. Software

PVP, Release 0.2.0

emit_alarm(alarm_type: pvp.alarm.AlarmType, severity: pvp.alarm.AlarmSeverity)
Emit alarm (by calling all callbacks with it).

Note: This method emits and clears alarms – a cleared alarm is emitted with AlarmSeverity.OFF

Parameters
• alarm_type (AlarmType) –

• severity (AlarmSeverity) –

deactivate_alarm(alarm: (<enum 'AlarmType'>, <class 'pvp.alarm.alarm.Alarm'>))
Mark an alarm’s internal active flags and remove from active_alarms

Typically called internally when an alarm is being replaced by one of the same type but a different severity.

Note: This does not alert listeners that an alarm has been cleared, for that emit an alarm with AlarmSever-
ity.OFF

Parameters alarm (AlarmType , Alarm) – Alarm to deactivate

dismiss_alarm(alarm_type: pvp.alarm.AlarmType, duration: Optional[float] = None)
GUI or other object requests an alarm to be dismissed & deactivated

GUI will wait until it receives an emit_alarm of severity == OFF to remove alarm widgets. If the alarm is
not latched

If the alarm is latched, alarm_manager will not decrement alarm severity or emit OFF until a) the condition
returns to OFF, and b) the user dismisses the alarm

Parameters
• alarm_type (AlarmType) – Alarm to dismiss

• duration (float) – seconds - amount of time to wait before alarm can be re-raised If a
duration is provided, the alarm will not be able to be re-raised

get_alarm_severity(alarm_type: pvp.alarm.AlarmType)
Get the severity of an Alarm

Parameters alarm_type (AlarmType) – Alarm type to check

Returns AlarmSeverity
register_alarm(alarm: pvp.alarm.alarm.Alarm)

Be given an already created alarm and emit to callbacks.

Mostly used during testing for programmatically created alarms. Creating alarms outside of the
Alarm_Manager is generally discouraged.

Parameters alarm (Alarm) –

register_dependency(condition: pvp.alarm.condition.Condition, dependency: dict, severity:
pvp.alarm.AlarmSeverity)

Add dependency in a Condition object to be updated when values are changed

Parameters
• condition (dict) – Condition as defined in an Alarm_Rule

1.1. PVP Modules 141

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

PVP, Release 0.2.0

• dependency (dict) – either a (ValueName, attribute_name) or optionally also + transfor-
mation callable

• severity (AlarmSeverity) – severity of dependency

update_dependencies(control_setting: pvp.common.message.ControlSetting)
Update Condition objects that update their value according to some control parameter

Call any transform functions on the attribute of the control setting specified in the depencency.

Emit another ControlSetting describing the new max or min or the value.

Parameters control_setting (ControlSetting) – Control setting that was changed

add_callback(callback: Callable)
Assert we’re being given a callable and add it to our list of callbacks.

Parameters callback (typing.Callable) – Callback that accepts a single argument of an
Alarm

add_dependency_callback(callback: Callable)
Assert we’re being given a callable and add it to our list of dependency_callbacks

Parameters callback (typing.Callable) – Callback that accepts a ControlSetting

Returns:

clear_all_alarms()
call Alarm_Manager.deactivate_alarm() for all active alarms.

reset()
Reset all conditions, callbacks, and other stateful attributes and clear alarms

Alarm Objects

Alarm objects represent the state and severity of active alarms, but are otherwise intentionally quite featureless.

They are created and maintained by the Alarm_Manager and sent to any listeners registered in Alarm_Manager.
callbacks .

Classes:

Alarm(alarm_type, severity[, start_time, ...]) Representation of alarm status and parameters

class pvp.alarm.alarm.Alarm(alarm_type: pvp.alarm.AlarmType, severity: pvp.alarm.AlarmSeverity,
start_time: Optional[float] = None, latch: bool = True, cause: Optional[list] =
None, value=None, message=None)

Representation of alarm status and parameters

Parameterized by a Alarm_Rule and managed by Alarm_Manager

Parameters
• alarm_type (AlarmType) – Type of alarm

• severity (AlarmSeverity) – Severity of alarm

• start_time (float) – Timestamp of alarm start, (as generated by time.time()

• cause (ValueName) – The ValueName that caused the alarm to be fired

• value (int, float) – optional - numerical value that generated the alarm

142 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

• message (str) – optional - override default text generated by AlarmManager

id
unique alarm ID

Type int

end_time
If None, alarm has not ended. otherwise timestamp

Type None, float

active
Whether or not the alarm is currently active

Type bool

Attributes:

id_counter used to generate unique IDs for each alarm
severity Alarm Severity, property without setter to prevent

change after instantiation
alarm_type Alarm Type, property without setter to prevent

change after instantiation

Methods:

__init__(alarm_type, severity[, start_time, ...])
param alarm_type Type of alarm

deactivate() If active, register an end time and set as active ==
False Returns:

id_counter = count(0)
used to generate unique IDs for each alarm

Type itertools.count
__init__(alarm_type: pvp.alarm.AlarmType, severity: pvp.alarm.AlarmSeverity, start_time: Optional[float]

= None, latch: bool = True, cause: Optional[list] = None, value=None, message=None)

Parameters
• alarm_type (AlarmType) – Type of alarm

• severity (AlarmSeverity) – Severity of alarm

• start_time (float) – Timestamp of alarm start, (as generated by time.time()

• cause (ValueName) – The ValueName that caused the alarm to be fired

• value (int, float) – optional - numerical value that generated the alarm

• message (str) – optional - override default text generated by AlarmManager

id
unique alarm ID

Type int

end_time
If None, alarm has not ended. otherwise timestamp

1.1. PVP Modules 143

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PVP, Release 0.2.0

Type None, float

active
Whether or not the alarm is currently active

Type bool

id: int

property severity: pvp.alarm.AlarmSeverity
Alarm Severity, property without setter to prevent change after instantiation

Returns AlarmSeverity
property alarm_type: pvp.alarm.AlarmType

Alarm Type, property without setter to prevent change after instantiation

Returns AlarmType
deactivate()

If active, register an end time and set as active == False Returns:

Alarm Rule

One Alarm_Rule is defined for each AlarmType in ALARM_RULES.

An alarm rule defines:

• The conditions for raising different severities of an alarm

• The dependencies between set values and alarm thresholds

• The behavior of the alarm, specifically whether it is latch ed.

Example

As an example, we’ll define a LOW_PRESSURE alarm with escalating severity. A LOW severity alarm will be raised when
measured PIP falls 10% below set PIP, which will escalate to a MEDIUM severity alarm if measured PIP falls 15%
below set PIP and the LOW severity alarm has been active for at least two breath cycles.

First we define the name and behavior of the alarm:

Alarm_Rule(
name = AlarmType.LOW_PRESSURE,
latch = False,

In this case, latch == Falsemeans that the alarm will disappear (or be downgraded in severity) whenever the condi-
tions for that alarm are no longer met. If latch == True, an alarm requires manual dismissal before it is downgraded
or disappears.

Next we’ll define a tuple of Condition objects for LOW and MEDIUM severity objects.

Starting with the LOW severity alarm:

conditions = (
(
AlarmSeverity.LOW,
condition.ValueCondition(

value_name=ValueName.PIP,
limit=VALUES[ValueName.PIP]['safe_range'][0],

(continues on next page)

144 Chapter 1. Software

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PVP, Release 0.2.0

(continued from previous page)

mode='min',
depends={

'value_name': ValueName.PIP,
'value_attr': 'value',
'condition_attr': 'limit',
'transform': lambda x : x-(x*0.10)

})
),
... continued in next block

Each condition is a tuple of an (AlarmSeverity, Condition). In this case, we use a ValueCondition which tests
whether a value is above or below a set 'max' or 'min', respectively. For the low severity LOW_PRESSURE alarm, we
test if ValueName.PIP is below (mode='min') some limit, which is initialized as the low-end of PIP’s safe range.

We also define a condition for updating the 'limit' of the condition ('condition_attr' : 'limit'), from the
ControlSetting.value` field whenever PIP is updated. Specifically, we set the limit to be 10% less than the set
PIP value by 10% with a lambda function (lambda x : x-(x*0.10)).

Next, we define the MEDIUM severity alarm condition:

(
AlarmSeverity.MEDIUM,
condition.ValueCondition(

value_name=ValueName.PIP,
limit=VALUES[ValueName.PIP]['safe_range'][0],
mode='min'
depends={

'value_name': ValueName.PIP,
'value_attr': 'value',
'condition_attr': 'limit',
'transform': lambda x: x - (x * 0.15)

},
) + \
condition.CycleAlarmSeverityCondition(

alarm_type = AlarmType.LOW_PRESSURE,
severity = AlarmSeverity.LOW,
n_cycles = 2

))

The first ValueCondition is the same as in the LOW alarm severity condition, except that it is set 15% below PIP.

A second CycleAlarmSeverityCondition has been added (with +) to the ValueCondition When conditions are
added together, they will only return True (ie. trigger an alarm) if all of the conditions are met. This condition checks
that the LOW_PRESSURE alarm has been active at a LOW severity for at least two cycles.

Full source for this example and all alarm rules can be found here

1.1. PVP Modules 145

_modules/pvp/alarm.html

PVP, Release 0.2.0

Module Documentation

Class to declare alarm rules

Classes:

Alarm_Rule(name, conditions[, latch, technical])
• name of rule

class pvp.alarm.rule.Alarm_Rule(name: pvp.alarm.AlarmType, conditions, latch=True, technical=False)

• name of rule

• conditions: ((alarm_type, (condition_1, condition_2)), . . .)

• latch (bool): if True, alarm severity cannot be decremented until user manually dismisses

• silencing/overriding rules

Methods:

check(sensor_values) Check all of our conditions .
reset()

Attributes:

severity Last Alarm Severity from .check() :returns:
AlarmSeverity

depends Get all ValueNames whose alarm limits depend on
this alarm rule :returns: list[ValueName]

value_names Get all ValueNames specified as value_names in
alarm conditions

check(sensor_values)
Check all of our conditions .

Parameters sensor_values –

Returns:

property severity
Last Alarm Severity from .check() :returns: AlarmSeverity

reset()

property depends: List[pvp.common.values.ValueName]
Get all ValueNames whose alarm limits depend on this alarm rule :returns: list[ValueName]

property value_names: List[pvp.common.values.ValueName]
Get all ValueNames specified as value_names in alarm conditions

Returns list[ValueName]

146 Chapter 1. Software

PVP, Release 0.2.0

Alarm Condition

Condition objects define conditions that can raise alarms. They are used by Alarm_Rule s.

Each has to define a Condition.check() method that accepts SensorValues . The method should return True if
the alarm condition is met, and False otherwise.

Conditions can be added (+) together to make compound conditions, and a single call to check will only return true if
both conditions return true. If any condition in the chain returns false, evaluation is stopped and the alarm is not raised.

Conditions can

Functions:

get_alarm_manager()

Classes:

Condition([depends]) Base class for specifying alarm test conditions
ValueCondition(value_name, limit, mode, ...) Value is greater or lesser than some max/min
CycleValueCondition(n_cycles, *args, **kwargs) Value goes out of range for a specific number of breath

cycles
TimeValueCondition(time, *args, **kwargs) value goes out of range for specific amount of time
AlarmSeverityCondition(alarm_type, severity) Alarm is above or below a certain severity.
CycleAlarmSeverityCondition(n_cycles, *args, ...) alarm goes out of range for a specific number of breath

cycles

pvp.alarm.condition.get_alarm_manager()

class pvp.alarm.condition.Condition(depends: Optional[dict] = None, *args, **kwargs)
Bases: object

Base class for specifying alarm test conditions

Subclasses must define Condition.check() and Conditino.reset()

Condition objects can be added together to create compound conditions.

_child
if another condition is added to this one, store a reference to it

Type Condition

Parameters
• depends (list, dict) – a list of, or a single dict:

{'value_name':ValueName,
'value_attr': attr in ControlMessage,
'condition_attr',
optional: transformation: callable)
that declare what values are needed to update

• *args –

• **kwargs –

1.1. PVP Modules 147

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PVP, Release 0.2.0

Methods:

__init__([depends])
param depends

check(sensor_values) Every Condition subclass needs to define this method
that accepts SensorValues and returns a boolean

reset() If a condition is stateful, need to provide some
method of resetting the state

Attributes:

manager The active alarm manager, used to get status of alarms

__init__(depends: Optional[dict] = None, *args, **kwargs)

Parameters
• depends (list, dict) – a list of, or a single dict:

{'value_name':ValueName,
'value_attr': attr in ControlMessage,
'condition_attr',
optional: transformation: callable)
that declare what values are needed to update

• *args –

• **kwargs –

property manager
The active alarm manager, used to get status of alarms

Returns pvp.alarm.alarm_manager.Alarm_Manager
check(sensor_values)→ bool

Every Condition subclass needs to define this method that accepts SensorValues and returns a boolean

Parameters sensor_values (SensorValues) – SensorValues used to compute alarm status

Returns bool

reset()
If a condition is stateful, need to provide some method of resetting the state

class pvp.alarm.condition.ValueCondition(value_name: pvp.common.values.ValueName, limit: (<class
'int'>, <class 'float'>), mode: str, *args, **kwargs)

Bases: pvp.alarm.condition.Condition

Value is greater or lesser than some max/min

Parameters
• value_name (ValueName) – Which value to check

• limit (int, float) – value to check against

• mode ('min', 'max') – whether the limit is a minimum or maximum

• *args –

148 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PVP, Release 0.2.0

• **kwargs –

operator
Either the less than or greater than operators, depending on whether mode is 'min' or 'max'

Type callable

Methods:

__init__(value_name, limit, mode, *args, ...)
param value_name Which value to

check

check(sensor_values) Check that the relevant value in SensorValues is ei-
ther greater or lesser than the limit

reset() not stateful, do nothing.

Attributes:

mode One of 'min' or 'max', defines how the incoming sen-
sor values are compared to the set value

__init__(value_name: pvp.common.values.ValueName, limit: (<class 'int'>, <class 'float'>), mode: str,
*args, **kwargs)

Parameters
• value_name (ValueName) – Which value to check

• limit (int, float) – value to check against

• mode ('min', 'max') – whether the limit is a minimum or maximum

• *args –

• **kwargs –

operator
Either the less than or greater than operators, depending on whether mode is 'min' or 'max'

Type callable

property mode
One of ‘min’ or ‘max’, defines how the incoming sensor values are compared to the set value

Returns:

check(sensor_values)
Check that the relevant value in SensorValues is either greater or lesser than the limit

Parameters sensor_values (SensorValues) –

Returns bool

reset()
not stateful, do nothing.

class pvp.alarm.condition.CycleValueCondition(n_cycles: int, *args, **kwargs)
Bases: pvp.alarm.condition.ValueCondition

Value goes out of range for a specific number of breath cycles

1.1. PVP Modules 149

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

PVP, Release 0.2.0

Parameters n_cycles (int) – number of cycles required

_start_cycle
The breath cycle where the

Type int

_mid_check
whether a value has left the acceptable range and we are counting consecutive breath cycles

Type bool

Parameters
• value_name (ValueName) – Which value to check

• limit (int, float) – value to check against

• mode ('min', 'max') – whether the limit is a minimum or maximum

• *args –

• **kwargs –

operator
Either the less than or greater than operators, depending on whether mode is 'min' or 'max'

Type callable

Attributes:

n_cycles Number of cycles required

Methods:

check(sensor_values) Check if outside of range, and then check if number
of breath cycles have elapsed

reset() Reset check status and start cycle

property n_cycles: int
Number of cycles required

check(sensor_values)→ bool
Check if outside of range, and then check if number of breath cycles have elapsed

Parameters () (sensor_values) –

Returns bool

reset()
Reset check status and start cycle

class pvp.alarm.condition.TimeValueCondition(time, *args, **kwargs)
Bases: pvp.alarm.condition.ValueCondition

value goes out of range for specific amount of time

Warning: Not implemented!

Parameters

150 Chapter 1. Software

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PVP, Release 0.2.0

• time (float) – number of seconds value must be out of range

• *args –

• **kwargs –

Methods:

__init__(time, *args, **kwargs)
param time number of seconds value

must be out of range

check(sensor_values) Check that the relevant value in SensorValues is ei-
ther greater or lesser than the limit

reset() not stateful, do nothing.

__init__(time, *args, **kwargs)

Parameters
• time (float) – number of seconds value must be out of range

• *args –

• **kwargs –

check(sensor_values)
Check that the relevant value in SensorValues is either greater or lesser than the limit

Parameters sensor_values (SensorValues) –

Returns bool

reset()
not stateful, do nothing.

class pvp.alarm.condition.AlarmSeverityCondition(alarm_type: pvp.alarm.AlarmType, severity:
pvp.alarm.AlarmSeverity, mode: str = 'min', *args,
**kwargs)

Bases: pvp.alarm.condition.Condition

Alarm is above or below a certain severity.

Get alarm severity status from Alarm_Manager.get_alarm_severity() .

Parameters
• alarm_type (AlarmType) – Alarm type to check

• severity (AlarmSeverity) – Alarm severity to check against

• mode (str) – one of ‘min’, ‘equals’, or ‘max’. ‘min’ returns true if the alarm is at least this
value (note the difference from ValueCondition which returns true if the alarm is less than..)
and vice versa for ‘max’.

Note: ’min’ and ‘max’ use >= and <= rather than > and <

• *args –

• **kwargs –

1.1. PVP Modules 151

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

Methods:

__init__(alarm_type, severity[, mode]) Alarm is above or below a certain severity.
check([sensor_values]) Every Condition subclass needs to define this method

that accepts SensorValues and returns a boolean
reset() If a condition is stateful, need to provide some

method of resetting the state

Attributes:

mode 'min' returns true if the alarm is at least this value
(note the difference from ValueCondition which re-
turns true if the alarm is less than..) and vice versa
for 'max'.

__init__(alarm_type: pvp.alarm.AlarmType, severity: pvp.alarm.AlarmSeverity, mode: str = 'min', *args,
**kwargs)

Alarm is above or below a certain severity.

Get alarm severity status from Alarm_Manager.get_alarm_severity() .

Parameters
• alarm_type (AlarmType) – Alarm type to check

• severity (AlarmSeverity) – Alarm severity to check against

• mode (str) – one of ‘min’, ‘equals’, or ‘max’. ‘min’ returns true if the alarm is at least
this value (note the difference from ValueCondition which returns true if the alarm is less
than..) and vice versa for ‘max’.

Note: ’min’ and ‘max’ use >= and <= rather than > and <

• *args –

• **kwargs –

property mode: str
‘min’ returns true if the alarm is at least this value (note the difference from ValueCondition which returns
true if the alarm is less than..) and vice versa for ‘max’.

Note: ‘min’ and ‘max’ use >= and <= rather than > and <

Returns one of ‘min’, ‘equals’, or ‘max’.

Return type str

check(sensor_values=None)
Every Condition subclass needs to define this method that accepts SensorValues and returns a boolean

Parameters sensor_values (SensorValues) – SensorValues used to compute alarm status

Returns bool

reset()
If a condition is stateful, need to provide some method of resetting the state

152 Chapter 1. Software

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

class pvp.alarm.condition.CycleAlarmSeverityCondition(n_cycles, *args, **kwargs)
Bases: pvp.alarm.condition.AlarmSeverityCondition

alarm goes out of range for a specific number of breath cycles

Todo: note that this is exactly the same as CycleValueCondition. Need to do the multiple inheritance thing

_start_cycle
The breath cycle where the

Type int

_mid_check
whether a value has left the acceptable range and we are counting consecutive breath cycles

Type bool

Alarm is above or below a certain severity.

Get alarm severity status from Alarm_Manager.get_alarm_severity() .

Parameters
• alarm_type (AlarmType) – Alarm type to check

• severity (AlarmSeverity) – Alarm severity to check against

• mode (str) – one of ‘min’, ‘equals’, or ‘max’. ‘min’ returns true if the alarm is at least this
value (note the difference from ValueCondition which returns true if the alarm is less than..)
and vice versa for ‘max’.

Note: ’min’ and ‘max’ use >= and <= rather than > and <

• *args –

• **kwargs –

Attributes:

n_cycles

Methods:

check(sensor_values) Every Condition subclass needs to define this method
that accepts SensorValues and returns a boolean

reset() If a condition is stateful, need to provide some
method of resetting the state

property n_cycles

check(sensor_values)
Every Condition subclass needs to define this method that accepts SensorValues and returns a boolean

Parameters sensor_values (SensorValues) – SensorValues used to compute alarm status

Returns bool

1.1. PVP Modules 153

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PVP, Release 0.2.0

reset()
If a condition is stateful, need to provide some method of resetting the state

1.1.17.3 Main Alarm Module

Classes:

AlarmType(value) An enumeration.
AlarmSeverity(value) An enumeration.

Data:

ALARM_RULES Definitions of all Alarm_Rule s used by the
Alarm_Manager

class pvp.alarm.AlarmType(value)
An enumeration.

Attributes:

LOW_PRESSURE

HIGH_PRESSURE

LOW_VTE

HIGH_VTE

LOW_PEEP

HIGH_PEEP

LOW_O2

HIGH_O2

OBSTRUCTION

LEAK

SENSORS_STUCK

BAD_SENSOR_READINGS

MISSED_HEARTBEAT

human_name Replace .name underscores with spaces

LOW_PRESSURE = 1

HIGH_PRESSURE = 2

154 Chapter 1. Software

PVP, Release 0.2.0

LOW_VTE = 3

HIGH_VTE = 4

LOW_PEEP = 5

HIGH_PEEP = 6

LOW_O2 = 7

HIGH_O2 = 8

OBSTRUCTION = 9

LEAK = 10

SENSORS_STUCK = 11

BAD_SENSOR_READINGS = 12

MISSED_HEARTBEAT = 13

property human_name: str
Replace .name underscores with spaces

class pvp.alarm.AlarmSeverity(value)
An enumeration.

Attributes:

HIGH

MEDIUM

LOW

OFF

TECHNICAL

HIGH = 3

MEDIUM = 2

LOW = 1

OFF = 0

TECHNICAL = -1

pvp.alarm.ALARM_RULES = OrderedDict([(<AlarmType.LOW_PRESSURE: 1>,
<pvp.alarm.rule.Alarm_Rule object>), (<AlarmType.HIGH_PRESSURE: 2>,
<pvp.alarm.rule.Alarm_Rule object>), (<AlarmType.LOW_VTE: 3>, <pvp.alarm.rule.Alarm_Rule
object>), (<AlarmType.HIGH_VTE: 4>, <pvp.alarm.rule.Alarm_Rule object>),
(<AlarmType.LOW_PEEP: 5>, <pvp.alarm.rule.Alarm_Rule object>), (<AlarmType.HIGH_PEEP: 6>,
<pvp.alarm.rule.Alarm_Rule object>), (<AlarmType.LOW_O2: 7>, <pvp.alarm.rule.Alarm_Rule
object>), (<AlarmType.HIGH_O2: 8>, <pvp.alarm.rule.Alarm_Rule object>)])

Definitions of all Alarm_Rule s used by the Alarm_Manager

See definitions here

1.1. PVP Modules 155

https://docs.python.org/3/library/stdtypes.html#str
_modules/pvp/alarm.html

PVP, Release 0.2.0

1.1.18 coordinator module

The coordinator provides an interface between the process threads, and facilitates inter-process communication. It is a
wrapper around xml-rpc, which allowed us to use defined data-structures such as SensorValues.

1.1.18.1 Submodules

1.1.18.2 coordinator

Classes:

CoordinatorBase([sim_mode])

CoordinatorLocal([sim_mode])
param sim_mode

CoordinatorRemote([sim_mode])

Functions:

get_coordinator([single_process, sim_mode])

class pvp.coordinator.coordinator.CoordinatorBase(sim_mode=False)
Bases: object

Methods:

get_sensors()

get_alarms()

set_control(control_setting)

get_control(control_setting_name)

set_breath_detection(breath_detection)

get_breath_detection()

start()

is_running()

kill()

stop()

get_sensors()→ pvp.common.message.SensorValues

156 Chapter 1. Software

https://docs.python.org/3/library/functions.html#object

PVP, Release 0.2.0

get_alarms()→ Union[None, Tuple[pvp.alarm.alarm.Alarm]]

set_control(control_setting: pvp.common.message.ControlSetting)

get_control(control_setting_name: pvp.common.values.ValueName)→
pvp.common.message.ControlSetting

set_breath_detection(breath_detection: bool)

get_breath_detection()→ bool

start()

is_running()→ bool

kill()

stop()

class pvp.coordinator.coordinator.CoordinatorLocal(sim_mode=False)
Bases: pvp.coordinator.coordinator.CoordinatorBase

Parameters sim_mode –

_is_running
.set() when thread should stop

Type threading.Event
Methods:

__init__([sim_mode])
param sim_mode

get_sensors()

get_alarms()

set_control(control_setting)

get_control(control_setting_name)

set_breath_detection(breath_detection)

get_breath_detection()

start() Start the coordinator.
is_running() Test whether the whole system is running
stop() Stop the coordinator.
kill()

__init__(sim_mode=False)

Parameters sim_mode –

_is_running
.set() when thread should stop

Type threading.Event

1.1. PVP Modules 157

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/threading.html#threading.Event
https://docs.python.org/3/library/threading.html#threading.Event

PVP, Release 0.2.0

get_sensors()→ pvp.common.message.SensorValues

get_alarms()→ Union[None, Tuple[pvp.alarm.alarm.Alarm]]

set_control(control_setting: pvp.common.message.ControlSetting)

get_control(control_setting_name: pvp.common.values.ValueName)→
pvp.common.message.ControlSetting

set_breath_detection(breath_detection: bool)

get_breath_detection()→ bool

start()
Start the coordinator. This does a soft start (not allocating a process).

is_running()→ bool
Test whether the whole system is running

stop()
Stop the coordinator. This does a soft stop (not kill a process)

kill()

class pvp.coordinator.coordinator.CoordinatorRemote(sim_mode=False)
Bases: pvp.coordinator.coordinator.CoordinatorBase

Methods:

get_sensors()

get_alarms()

set_control(control_setting)

get_control(control_setting_name)

set_breath_detection(breath_detection)

get_breath_detection()

start() Start the coordinator.
is_running() Test whether the whole system is running
stop() Stop the coordinator.
kill() Stop the coordinator and end the whole program

get_sensors()→ pvp.common.message.SensorValues

get_alarms()→ Union[None, Tuple[pvp.alarm.alarm.Alarm]]

set_control(control_setting: pvp.common.message.ControlSetting)

get_control(control_setting_name: pvp.common.values.ValueName)→
pvp.common.message.ControlSetting

set_breath_detection(breath_detection: bool)

get_breath_detection()→ bool

start()
Start the coordinator. This does a soft start (not allocating a process).

158 Chapter 1. Software

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PVP, Release 0.2.0

is_running()→ bool
Test whether the whole system is running

stop()
Stop the coordinator. This does a soft stop (not kill a process)

kill()
Stop the coordinator and end the whole program

pvp.coordinator.coordinator.get_coordinator(single_process=False, sim_mode=False)→
pvp.coordinator.coordinator.CoordinatorBase

1.1.18.3 ipc

Functions:

get_sensors()

get_alarms()

set_control(control_setting)

get_control(control_setting_name)

set_breath_detection(breath_detection)

get_breath_detection()

rpc_server_main(sim_mode, serve_event[, ...])

get_rpc_client()

pvp.coordinator.rpc.get_sensors()

pvp.coordinator.rpc.get_alarms()

pvp.coordinator.rpc.set_control(control_setting)

pvp.coordinator.rpc.get_control(control_setting_name)

pvp.coordinator.rpc.set_breath_detection(breath_detection)

pvp.coordinator.rpc.get_breath_detection()

pvp.coordinator.rpc.rpc_server_main(sim_mode, serve_event, addr='localhost', port=9533)

pvp.coordinator.rpc.get_rpc_client()

1.1. PVP Modules 159

https://docs.python.org/3/library/functions.html#bool

PVP, Release 0.2.0

1.1.18.4 process_manager

Classes:

ProcessManager(sim_mode[, startCommandLine,
...])

class pvp.coordinator.process_manager.ProcessManager(sim_mode, startCommandLine=None,
maxHeartbeatInterval=None)

Bases: object

Methods:

start_process()

try_stop_process()

restart_process()

heartbeat(timestamp)

start_process()

try_stop_process()

restart_process()

heartbeat(timestamp)

1.1.19 Index

• genindex

• modindex

160 Chapter 1. Software

https://docs.python.org/3/library/functions.html#object

CHAPTER

TWO

MEDICAL DISCLAIMER

PVP1 is not a regulated or clinically validated medical device. We have not yet performed testing for safety or efficacy
on living organisms. All material described herein should be used at your own risk and do not represent a medical
recommendation. PVP1 is currently recommended only for research purposes.

This website is not connected to, endorsed by, or representative of the view of Princeton University. Neither the authors
nor Princeton University assume any liability or responsibility for any consequences, damages, or loss caused or alleged
to be caused directly or indirectly for any action or inaction taken based on or made in reliance on the information or
material discussed herein or linked to from this website.

PVP1 is under continuous development and the information here may not be up to date, nor is any guarantee made as
such. Neither the authors nor Princeton University are liable for any damage or loss related to the accuracy, complete-
ness or timeliness of any information described or linked to from this website.

By continuing to watch or read this, you are acknowledging and accepting this disclaimer.

161

PVP, Release 0.2.0

162 Chapter 2. Medical Disclaimer

PYTHON MODULE INDEX

p
pvp.alarm, 154
pvp.alarm.alarm, 142
pvp.alarm.alarm_manager, 137
pvp.alarm.condition, 147
pvp.alarm.rule, 146
pvp.common.fashion, 135
pvp.common.loggers, 127
pvp.common.message, 124
pvp.common.prefs, 130
pvp.common.unit_conversion, 133
pvp.common.utils, 134
pvp.common.values, 118
pvp.controller.control_module, 109
pvp.coordinator.coordinator, 156
pvp.coordinator.process_manager, 160
pvp.coordinator.rpc, 159
pvp.gui.styles, 106
pvp.io, 135
pvp.io.devices, 137
pvp.io.hal, 135

163

PVP, Release 0.2.0

164 Python Module Index

INDEX

Symbols
_DEFAULTS (in module pvp.common.prefs), 131
_DIRECTORIES (in module pvp.common.prefs), 131
_LOCK (in module pvp.common.prefs), 131
_LOGGER (in module pvp.common.prefs), 131
_LOGGERS (in module pvp.common.loggers), 127
_PID_update() (pvp.controller.control_module.ControlModuleBase

method), 114
_PREFS (in module pvp.common.prefs), 131
_PREF_MANAGER (in module pvp.common.prefs), 131
__SimulatedPropValve()

(pvp.controller.control_module.ControlModuleSimulator
method), 117

__SimulatedSolenoid()
(pvp.controller.control_module.ControlModuleSimulator
method), 117

__analyze_last_waveform()
(pvp.controller.control_module.ControlModuleBase
method), 112

__calculate_control_signal_in()
(pvp.controller.control_module.ControlModuleBase
method), 113

__comptest() (pvp.controller.control_module.ControlModuleBase
method), 112

__get_PID_error() (pvp.controller.control_module.ControlModuleBase
method), 113

__get_hal() (pvp.controller.control_module.ControlModuleDevice
method), 115

__init__() (pvp.alarm.alarm.Alarm method), 143
__init__() (pvp.alarm.condition.AlarmSeverityCondition

method), 152
__init__() (pvp.alarm.condition.Condition method),

148
__init__() (pvp.alarm.condition.TimeValueCondition

method), 151
__init__() (pvp.alarm.condition.ValueCondition

method), 149
__init__() (pvp.common.loggers.DataLogger method),

129
__init__() (pvp.common.message.ControlSetting

method), 126
__init__() (pvp.common.message.SensorValues

method), 125
__init__() (pvp.common.values.Value method), 121
__init__() (pvp.controller.control_module.ControlModuleBase

method), 111
__init__() (pvp.controller.control_module.ControlModuleDevice

method), 115
__init__() (pvp.controller.control_module.ControlModuleSimulator

method), 117
__init__() (pvp.coordinator.coordinator.CoordinatorLocal

method), 157
__init__() (pvp.io.hal.Hal method), 136
__save_values() (pvp.controller.control_module.ControlModuleBase

method), 114
__start_new_breathcycle()

(pvp.controller.control_module.ControlModuleBase
method), 113

__test_for_alarms()
(pvp.controller.control_module.ControlModuleBase
method), 113

_child (pvp.alarm.condition.Condition attribute), 147
_control_reset() (pvp.controller.control_module.ControlModuleBase

method), 113
_controls_from_COPY()

(pvp.controller.control_module.ControlModuleBase
method), 112

_get_HAL() (pvp.controller.control_module.ControlModuleDevice
method), 115

_get_control_signal_in()
(pvp.controller.control_module.ControlModuleBase
method), 113

_get_control_signal_out()
(pvp.controller.control_module.ControlModuleBase
method), 113

_initialize_set_to_COPY()
(pvp.controller.control_module.ControlModuleBase
method), 112

_instance (pvp.alarm.alarm_manager.Alarm_Manager
attribute), 140

_is_running (pvp.coordinator.coordinator.CoordinatorLocal
attribute), 157

_mid_check (pvp.alarm.condition.CycleAlarmSeverityCondition
attribute), 153

165

PVP, Release 0.2.0

_mid_check (pvp.alarm.condition.CycleValueCondition
attribute), 150

_open_logfile() (pvp.common.loggers.DataLogger
method), 129

_reset() (pvp.controller.control_module.Balloon_Simulator
method), 116

_sensor_to_COPY() (pvp.controller.control_module.ControlModuleBase
method), 112

_sensor_to_COPY() (pvp.controller.control_module.ControlModuleDevice
method), 115

_sensor_to_COPY() (pvp.controller.control_module.ControlModuleSimulator
method), 117

_set_HAL() (pvp.controller.control_module.ControlModuleDevice
method), 115

_start_cycle (pvp.alarm.condition.CycleAlarmSeverityCondition
attribute), 153

_start_cycle (pvp.alarm.condition.CycleValueCondition
attribute), 150

_start_mainloop() (pvp.controller.control_module.ControlModuleBase
method), 114

_start_mainloop() (pvp.controller.control_module.ControlModuleDevice
method), 116

_start_mainloop() (pvp.controller.control_module.ControlModuleSimulator
method), 117

A
abs_range (pvp.common.values.Value property), 121
active (pvp.alarm.alarm.Alarm attribute), 143, 144
active_alarms (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
add_callback() (pvp.alarm.alarm_manager.Alarm_Manager

method), 142
add_dependency_callback()

(pvp.alarm.alarm_manager.Alarm_Manager
method), 142

additional_values (pvp.common.message.SensorValues
attribute), 125

Alarm (class in pvp.alarm.alarm), 142
Alarm_Manager (class in pvp.alarm.alarm_manager),

137
Alarm_Rule (class in pvp.alarm.rule), 146
ALARM_RULES (in module pvp.alarm), 155
alarm_type (pvp.alarm.alarm.Alarm property), 144
AlarmSeverity (class in pvp.alarm), 155
AlarmSeverityCondition (class in

pvp.alarm.condition), 151
AlarmType (class in pvp.alarm), 154
aux_pressure (pvp.io.hal.Hal property), 137

B
BAD_SENSOR_READINGS (pvp.alarm.AlarmType at-

tribute), 155
Balloon_Simulator (class in

pvp.controller.control_module), 116

BREATHS_PER_MINUTE (pvp.common.values.ValueName
attribute), 119

C
callbacks (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
check() (pvp.alarm.condition.AlarmSeverityCondition

method), 152
check() (pvp.alarm.condition.Condition method), 148
check() (pvp.alarm.condition.CycleAlarmSeverityCondition

method), 153
check() (pvp.alarm.condition.CycleValueCondition

method), 150
check() (pvp.alarm.condition.TimeValueCondition

method), 151
check() (pvp.alarm.condition.ValueCondition method),

149
check() (pvp.alarm.rule.Alarm_Rule method), 146
check_files() (pvp.common.loggers.DataLogger

method), 129
check_rule() (pvp.alarm.alarm_manager.Alarm_Manager

method), 140
clear_all_alarms() (pvp.alarm.alarm_manager.Alarm_Manager

method), 142
cleared_alarms (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
close_logfile() (pvp.common.loggers.DataLogger

method), 129
cmH2O_to_hPa() (in module

pvp.common.unit_conversion), 133
Condition (class in pvp.alarm.condition), 147
CONTROL (in module pvp.common.values), 123
control (pvp.common.values.Value property), 122
control_type (pvp.common.values.Value property),

122
ControlModuleBase (class in

pvp.controller.control_module), 110
ControlModuleDevice (class in

pvp.controller.control_module), 114
ControlModuleSimulator (class in

pvp.controller.control_module), 116
ControlSetting (class in pvp.common.message), 125
ControlValues (class in pvp.common.message), 126
CoordinatorBase (class in

pvp.coordinator.coordinator), 156
CoordinatorLocal (class in

pvp.coordinator.coordinator), 157
CoordinatorRemote (class in

pvp.coordinator.coordinator), 158
CycleAlarmSeverityCondition (class in

pvp.alarm.condition), 152
CycleValueCondition (class in pvp.alarm.condition),

149

166 Index

PVP, Release 0.2.0

D
DataLogger (class in pvp.common.loggers), 128
deactivate() (pvp.alarm.alarm.Alarm method), 144
deactivate_alarm() (pvp.alarm.alarm_manager.Alarm_Manager

method), 141
decimals (pvp.common.values.Value property), 122
default (pvp.common.values.Value property), 122
dependencies (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
depends (pvp.alarm.rule.Alarm_Rule property), 146
depends_callbacks (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
DerivedValues (class in pvp.common.message), 126
dismiss_alarm() (pvp.alarm.alarm_manager.Alarm_Manager

method), 141
display (pvp.common.values.Value property), 122
DISPLAY_CONTROL (in module pvp.common.values), 123
DISPLAY_MONITOR (in module pvp.common.values), 123

E
emit_alarm() (pvp.alarm.alarm_manager.Alarm_Manager

method), 140
end_time (pvp.alarm.alarm.Alarm attribute), 143

F
FIO2 (pvp.common.values.ValueName attribute), 119
flow_ex (pvp.io.hal.Hal property), 137
flow_in (pvp.io.hal.Hal property), 137
FLOWOUT (pvp.common.values.ValueName attribute), 119
flush_logfile() (pvp.common.loggers.DataLogger

method), 129

G
get_alarm_manager() (in module

pvp.alarm.condition), 147
get_alarm_severity()

(pvp.alarm.alarm_manager.Alarm_Manager
method), 141

get_alarms() (in module pvp.coordinator.rpc), 159
get_alarms() (pvp.controller.control_module.ControlModuleBase

method), 112
get_alarms() (pvp.coordinator.coordinator.CoordinatorBase

method), 156
get_alarms() (pvp.coordinator.coordinator.CoordinatorLocal

method), 158
get_alarms() (pvp.coordinator.coordinator.CoordinatorRemote

method), 158
get_breath_detection() (in module

pvp.coordinator.rpc), 159
get_breath_detection()

(pvp.controller.control_module.ControlModuleBase
method), 113

get_breath_detection()
(pvp.coordinator.coordinator.CoordinatorBase
method), 157

get_breath_detection()
(pvp.coordinator.coordinator.CoordinatorLocal
method), 158

get_breath_detection()
(pvp.coordinator.coordinator.CoordinatorRemote
method), 158

get_control() (in module pvp.coordinator.rpc), 159
get_control() (pvp.controller.control_module.ControlModuleBase

method), 112
get_control() (pvp.coordinator.coordinator.CoordinatorBase

method), 157
get_control() (pvp.coordinator.coordinator.CoordinatorLocal

method), 158
get_control() (pvp.coordinator.coordinator.CoordinatorRemote

method), 158
get_control_module() (in module

pvp.controller.control_module), 117
get_coordinator() (in module

pvp.coordinator.coordinator), 159
get_heartbeat() (pvp.controller.control_module.ControlModuleBase

method), 114
get_past_waveforms()

(pvp.controller.control_module.ControlModuleBase
method), 114

get_pref() (in module pvp.common.prefs), 132
get_pressure() (pvp.controller.control_module.Balloon_Simulator

method), 116
get_rpc_client() (in module pvp.coordinator.rpc),

159
get_sensors() (in module pvp.coordinator.rpc), 159
get_sensors() (pvp.controller.control_module.ControlModuleBase

method), 112
get_sensors() (pvp.coordinator.coordinator.CoordinatorBase

method), 156
get_sensors() (pvp.coordinator.coordinator.CoordinatorLocal

method), 157
get_sensors() (pvp.coordinator.coordinator.CoordinatorRemote

method), 158
get_version() (in module pvp.common.utils), 134
group (pvp.common.values.Value property), 122

H
Hal (class in pvp.io.hal), 135
heartbeat() (pvp.coordinator.process_manager.ProcessManager

method), 160
HIGH (pvp.alarm.AlarmSeverity attribute), 155
HIGH_O2 (pvp.alarm.AlarmType attribute), 155
HIGH_PEEP (pvp.alarm.AlarmType attribute), 155
HIGH_PRESSURE (pvp.alarm.AlarmType attribute), 154
HIGH_VTE (pvp.alarm.AlarmType attribute), 155

Index 167

PVP, Release 0.2.0

hPa_to_cmH2O() (in module
pvp.common.unit_conversion), 134

human_name (pvp.alarm.AlarmType property), 155

I
id (pvp.alarm.alarm.Alarm attribute), 143, 144
id_counter (pvp.alarm.alarm.Alarm attribute), 143
IE_RATIO (pvp.common.values.ValueName attribute),

119
init() (in module pvp.common.prefs), 133
init_logger() (in module pvp.common.loggers), 127
INSPIRATION_TIME_SEC

(pvp.common.values.ValueName attribute),
119

is_running() (pvp.controller.control_module.ControlModuleBase
method), 114

is_running() (pvp.coordinator.coordinator.CoordinatorBase
method), 157

is_running() (pvp.coordinator.coordinator.CoordinatorLocal
method), 158

is_running() (pvp.coordinator.coordinator.CoordinatorRemote
method), 158

K
kill() (pvp.coordinator.coordinator.CoordinatorBase

method), 157
kill() (pvp.coordinator.coordinator.CoordinatorLocal

method), 158
kill() (pvp.coordinator.coordinator.CoordinatorRemote

method), 159

L
LEAK (pvp.alarm.AlarmType attribute), 155
load_file() (pvp.common.loggers.DataLogger

method), 129
load_prefs() (in module pvp.common.prefs), 133
load_rule() (pvp.alarm.alarm_manager.Alarm_Manager

method), 140
load_rules() (pvp.alarm.alarm_manager.Alarm_Manager

method), 140
LOADED (in module pvp.common.prefs), 131
log2csv() (pvp.common.loggers.DataLogger method),

130
log2mat() (pvp.common.loggers.DataLogger method),

130
logged_alarms (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
logger (pvp.alarm.alarm_manager.Alarm_Manager at-

tribute), 140
LOW (pvp.alarm.AlarmSeverity attribute), 155
LOW_O2 (pvp.alarm.AlarmType attribute), 155
LOW_PEEP (pvp.alarm.AlarmType attribute), 155
LOW_PRESSURE (pvp.alarm.AlarmType attribute), 154
LOW_VTE (pvp.alarm.AlarmType attribute), 154

M
make_dirs() (in module pvp.common.prefs), 133
manager (pvp.alarm.condition.Condition property), 148
MEDIUM (pvp.alarm.AlarmSeverity attribute), 155
MISSED_HEARTBEAT (pvp.alarm.AlarmType attribute),

155
mode (pvp.alarm.condition.AlarmSeverityCondition

property), 152
mode (pvp.alarm.condition.ValueCondition property),

149
module

pvp.alarm, 154
pvp.alarm.alarm, 142
pvp.alarm.alarm_manager, 137
pvp.alarm.condition, 147
pvp.alarm.rule, 146
pvp.common.fashion, 135
pvp.common.loggers, 127
pvp.common.message, 124
pvp.common.prefs, 130
pvp.common.unit_conversion, 133
pvp.common.utils, 134
pvp.common.values, 118
pvp.controller.control_module, 109
pvp.coordinator.coordinator, 156
pvp.coordinator.process_manager, 160
pvp.coordinator.rpc, 159
pvp.gui.styles, 106
pvp.io, 135
pvp.io.devices, 137
pvp.io.hal, 135

MONITOR_UPDATE_INTERVAL (in module pvp.gui.styles),
106

N
n_cycles (pvp.alarm.condition.CycleAlarmSeverityCondition

property), 153
n_cycles (pvp.alarm.condition.CycleValueCondition

property), 150
name (pvp.common.values.Value property), 121

O
OBSTRUCTION (pvp.alarm.AlarmType attribute), 155
OFF (pvp.alarm.AlarmSeverity attribute), 155
operator (pvp.alarm.condition.CycleValueCondition at-

tribute), 150
operator (pvp.alarm.condition.ValueCondition at-

tribute), 149
OUupdate() (pvp.controller.control_module.Balloon_Simulator

method), 116
oxygen (pvp.io.hal.Hal property), 137

P
PEEP (pvp.common.values.ValueName attribute), 119

168 Index

PVP, Release 0.2.0

PEEP_TIME (pvp.common.values.ValueName attribute),
119

pending_clears (pvp.alarm.alarm_manager.Alarm_Manager
attribute), 138, 140

pigpio_command() (in module pvp.common.fashion),
135

PIP (pvp.common.values.ValueName attribute), 119
PIP_TIME (pvp.common.values.ValueName attribute),

119
plot (pvp.common.values.Value property), 122
plot_limits (pvp.common.values.Value property), 122
PLOTS (in module pvp.common.values), 123
PRESSURE (pvp.common.values.ValueName attribute),

119
pressure (pvp.io.hal.Hal property), 136
ProcessManager (class in

pvp.coordinator.process_manager), 160
pvp.alarm

module, 154
pvp.alarm.alarm

module, 142
pvp.alarm.alarm_manager

module, 137
pvp.alarm.condition

module, 147
pvp.alarm.rule

module, 146
pvp.common.fashion

module, 135
pvp.common.loggers

module, 127
pvp.common.message

module, 124
pvp.common.prefs

module, 130
pvp.common.unit_conversion

module, 133
pvp.common.utils

module, 134
pvp.common.values

module, 118
pvp.controller.control_module

module, 109
pvp.coordinator.coordinator

module, 156
pvp.coordinator.process_manager

module, 160
pvp.coordinator.rpc

module, 159
pvp.gui.styles

module, 106
pvp.io

module, 135
pvp.io.devices

module, 137
pvp.io.hal

module, 135

R
register_alarm() (pvp.alarm.alarm_manager.Alarm_Manager

method), 141
register_dependency()

(pvp.alarm.alarm_manager.Alarm_Manager
method), 141

reset() (pvp.alarm.alarm_manager.Alarm_Manager
method), 142

reset() (pvp.alarm.condition.AlarmSeverityCondition
method), 152

reset() (pvp.alarm.condition.Condition method), 148
reset() (pvp.alarm.condition.CycleAlarmSeverityCondition

method), 153
reset() (pvp.alarm.condition.CycleValueCondition

method), 150
reset() (pvp.alarm.condition.TimeValueCondition

method), 151
reset() (pvp.alarm.condition.ValueCondition method),

149
reset() (pvp.alarm.rule.Alarm_Rule method), 146
restart_process() (pvp.coordinator.process_manager.ProcessManager

method), 160
rotation_newfile() (pvp.common.loggers.DataLogger

method), 129
rounded_string() (in module

pvp.common.unit_conversion), 134
rpc_server_main() (in module pvp.coordinator.rpc),

159
rules (pvp.alarm.alarm_manager.Alarm_Manager at-

tribute), 138, 140

S
safe_range (pvp.common.values.Value property), 121
save_prefs() (in module pvp.common.prefs), 133
SENSOR (in module pvp.common.values), 123
sensor (pvp.common.values.Value property), 122
SENSORS_STUCK (pvp.alarm.AlarmType attribute), 155
SensorValues (class in pvp.common.message), 124
set_breath_detection() (in module

pvp.coordinator.rpc), 159
set_breath_detection()

(pvp.controller.control_module.ControlModuleBase
method), 112

set_breath_detection()
(pvp.coordinator.coordinator.CoordinatorBase
method), 157

set_breath_detection()
(pvp.coordinator.coordinator.CoordinatorLocal
method), 158

Index 169

PVP, Release 0.2.0

set_breath_detection()
(pvp.coordinator.coordinator.CoordinatorRemote
method), 158

set_control() (in module pvp.coordinator.rpc), 159
set_control() (pvp.controller.control_module.ControlModuleBase

method), 112
set_control() (pvp.coordinator.coordinator.CoordinatorBase

method), 157
set_control() (pvp.coordinator.coordinator.CoordinatorLocal

method), 158
set_control() (pvp.coordinator.coordinator.CoordinatorRemote

method), 158
set_dark_palette() (in module pvp.gui.styles), 107
set_flow_in() (pvp.controller.control_module.Balloon_Simulator

method), 116
set_flow_out() (pvp.controller.control_module.Balloon_Simulator

method), 116
set_pref() (in module pvp.common.prefs), 132
set_valves_standby()

(pvp.controller.control_module.ControlModuleDevice
method), 116

setpoint_ex (pvp.io.hal.Hal property), 137
setpoint_in (pvp.io.hal.Hal property), 137
severity (pvp.alarm.alarm.Alarm property), 144
severity (pvp.alarm.rule.Alarm_Rule property), 146
snoozed_alarms (pvp.alarm.alarm_manager.Alarm_Manager

attribute), 138, 140
start() (pvp.controller.control_module.ControlModuleBase

method), 114
start() (pvp.coordinator.coordinator.CoordinatorBase

method), 157
start() (pvp.coordinator.coordinator.CoordinatorLocal

method), 158
start() (pvp.coordinator.coordinator.CoordinatorRemote

method), 158
start_process() (pvp.coordinator.process_manager.ProcessManager

method), 160
stop() (pvp.controller.control_module.ControlModuleBase

method), 114
stop() (pvp.coordinator.coordinator.CoordinatorBase

method), 157
stop() (pvp.coordinator.coordinator.CoordinatorLocal

method), 158
stop() (pvp.coordinator.coordinator.CoordinatorRemote

method), 159
store_control_command()

(pvp.common.loggers.DataLogger method),
129

store_derived_data()
(pvp.common.loggers.DataLogger method),
129

store_program_data()
(pvp.common.loggers.DataLogger method),
129

store_waveform_data()
(pvp.common.loggers.DataLogger method),
129

T
TECHNICAL (pvp.alarm.AlarmSeverity attribute), 155
time_limit() (in module pvp.common.utils), 134
timeout() (in module pvp.common.utils), 134
TimeoutException, 134
TimeValueCondition (class in pvp.alarm.condition),

150
to_dict() (pvp.common.message.SensorValues

method), 125
to_dict() (pvp.common.values.Value method), 122
try_stop_process() (pvp.coordinator.process_manager.ProcessManager

method), 160

U
update() (pvp.alarm.alarm_manager.Alarm_Manager

method), 140
update() (pvp.controller.control_module.Balloon_Simulator

method), 116
update_dependencies()

(pvp.alarm.alarm_manager.Alarm_Manager
method), 142

update_logger_sizes() (in module
pvp.common.loggers), 128

V
Value (class in pvp.common.values), 119
value_names (pvp.alarm.rule.Alarm_Rule property),

146
ValueCondition (class in pvp.alarm.condition), 148
ValueName (class in pvp.common.values), 118
VALUES (in module pvp.common.values), 122
VTE (pvp.common.values.ValueName attribute), 119

170 Index

	Software
	PVP Modules
	System Overview
	Hardware
	PVP Hardware

	Software
	PVP Modules

	Performance
	ISO Standards Testing
	Breath Detection
	High Pressure Detection

	Medical Disclaimer
	Funding and Support
	Hardware Overview
	Components
	Hardware Design
	Actuator Selection
	Sensor Selection

	Assembly
	Part 1. 3D Printed Components and Enclosure
	1.1 3D Printing Adapters and Brackets.
	1.2 Tapping the 3D Printed Components
	1.3 Cutting Enclosure Pieces.

	Part 2. Basic Hardware Assembly
	2.1 Assembling the bottom frame
	2.2 Assembling the frame sides
	2.2 Assembling the frame top

	Part 3. Electronics Assembly
	3.1 Assembling the Sensor Board
	3.2 Assembling the Actuator Board
	3.3 Assembling the PCB-RPi stack

	Part 4. Putting it all together
	4.1 Wrapping it up.

	Electronics
	Power and I/O
	Sensor PCB
	Actuator PCB

	Bill of Materials
	CAD
	3D Printed Parts
	Enclosure

	Software Overview
	Folder Structure
	PVP Modules

	GUI
	Main GUI Module
	GUI Widgets
	Control Panel
	Alarm Bar
	Display
	Plot
	Components
	Dialog

	GUI Stylesheets
	Module Overview
	Screenshot

	Controller
	Purpose of the Controller
	Architecture of the Controller

	common module
	Values
	Message
	Loggers
	Prefs
	Unit Conversion
	utils
	fashion

	pvp.io package
	pvp.io.hal module
	devices

	Alarm
	Alarm System Overview
	Alarm Modules
	Alarm Manager
	Alarm Objects
	Alarm Rule
	Example
	Module Documentation

	Alarm Condition

	Main Alarm Module

	coordinator module
	Submodules
	coordinator
	ipc
	process_manager

	Index

	Medical Disclaimer
	Python Module Index
	Index

